Разработана электромагнитная автомобильная подвеска

Что надо знать об электромагнитной подвеске

Быстрее всего работают узлы и элементы, использующие электромагнитное взаимодействие между составными частями.

Такие устройства способны максимально оперативно реагировать на внешние воздействия, получая команды от электронного контроллера.

Принцип работы

Известно, что одноимённые полюса магнитов отталкиваются. Если магниты выполнены с электрической активацией, то такое устройство называется электромагнитом. Изменяя величину тока, проходящего по обмоткам электромагнитов можно регулировать силу их отталкивания.

Всё это позволяет использовать конструкцию из двух и более магнитов, как эффективную и быстродействующую пружину, поскольку внешний эффект совершенно идентичен стальной рессоре или её спиральному аналогу – пружине.

Получившаяся электромагнитная пружина обладает чрезвычайно полезным свойством мгновенной реакции на управляющее воздействие. Никаким другим способом добиться такой скорости невозможно, гидравлика и пневматика имеют задержки, измеряемые секундами, что для быстрого изменения мгновенной жёсткости неприемлемо.

Имея такой мощный инструмент в подвеске конструкторам остаётся только построить электронный блок управления, снабдить его нужным набором датчиков и разработать соответствующее программное обеспечение управляющего микрокомпьютера.

Теоретически такая задача легко выполнима, хотя на практике и выявляются определённые сложности. Как обычно, всё упирается в цену вопроса. Особенно если это касается крупносерийного производства. Можно создать идеально работающую систему, но в массовом выпуске она не будет обладать нужной конкурентоспособностью.

Ещё один путь внедрения электротехники в подвеску – это применение её в демпфирующих элементах более традиционной гидравлической конструкции.

Здесь можно поступить двумя способами:

  • управлять электрогидравлическими клапанами, через которые перетекает рабочая жидкость амортизатора, уменьшение сечения переходного отверстия ведёт к повышению эффективной жёсткости узла и наоборот, амортизатор работает мягче, если масло в нём перетекает свободно;
  • тот же эффект даст изменение свойств самой жидкости под воздействием внешнего электромагнитного поля, такие смеси существуют, в них используется принцип пространственной ориентации ферромагнитных частиц.

Второй способ даёт большее быстродействие, но и стоит дороже, поскольку подобные жидкости высокотехнологичны и сложны в производстве.

Из каких элементов состоит?

На сегодняшний день, на рынке главенствуют три компании:

Естественно, устройство каждой упомянутой подвески будет отличаться.

Электромагнитная подвеска от Delphi представляет собой амортизатор, состоящий из одной трубки, заполненной веществом с включением магнитных составляющих. Они составляют 30% от всего объема необходимой жидкости, а чтобы она не выливалась, в шасси присутствует специальное покрытие.

Это интересно:  Tiger Moon

В роли электромагнита выступает поршневая головка, управляемая компьютеризированной системой бортового типа.
Электромагнитная подвеска от SKF – это капсула с двумя электромагнитами.

Когда машина находится в движении, система начинает анализировать информацию и, при необходимости, может менять жидкость демпферного элемента, в зависимости от информации, поступающей от колесных датчиков.

Подвеска от Bose считается лучшей конструкцией данного типа. Она представляет собой электродвигатель линейного типа с несколькими режимами:

  • демпфирующий элемент;
  • упругий элемент.

Это шток, на котором расположены магниты. Когда автомобиль движется, шток выполняет двигательные манипуляции по всей длине статора. Данное обстоятельство позволяет очень уверенно чувствовать себя даже на достаточно неровной дороге.

  Причины остановки транспортного средства сотрудниками дпс

Помимо уверенной езды по неровной дороге, такая подвеска позволяет выбирать определенный режим работы компьютера. В частности, если выполняется вираж, то можно сделать так, чтобы рабочим было именно заднее внешнее колесо.

Уникальность электромагнитной подвески

По смелости и оригинальности своего конструкторского решения магнитные подвески, несомненно, поражают. Электромагнитная подвеска – это хитроумное устройство, имеющее внешне вид стойки для каждого колеса, которое функционально призвано заменить традиционные, привычные для нас пружины, амортизаторы и прочие вспомогательные детали. Управление такими необычными подвесками осуществляется с помощью электронного блока.

Как показывают испытания, такие новинки, как правило, сполна выполняют свою основную задачу – обеспечить автомобилю максимально плавный ход. Достигается это за счёт электромагнитных приспособлений – разных электромагнитных клапанов или особенной магнитно-реологической жидкости. То есть, если в подвеске гидравлического вида используют специальную жидкость, в пневматической подвеске – воздух, а механической – разные упругие пружины и прочие элементы, то здесь эту роль отведено электромагниту. Причём водитель имеет возможность постоянно контролировать, как они работают. Хотя, правду говоря, некоторые новшества всё же оснащены на всякий случай обычными амортизаторами и пружинами – для тех непредвиденных ситуаций, когда новая автоматическая технология по тем или иным причинам внезапно откажет.

Многорычажная подвеска

Данный тип подвески немного похож на двухрычажную схему, но он гораздо сложнее и совершеннее. Неудивительно, что к ней перекочевали и все достоинства предыдущего вида. Это набор из рычагов, сайлент-блоков и шарниров, которые крепятся на специальный подрамник. Большое количество шаровых опор и «сайлентов» обеспечивают не только завидную плавность хода, но и отлично гасят удары в случае резкого наезда на какое-либо препятствие, а еще они уменьшают уровень шума в салоне от колес.

При такой схеме достигается наилучшее сцепление покрышки с дорогой (любой тип покрытия), отточенная управляемость и плавность хода.

Достоинства «многорычажки»:

  • малые неподрессоренные массы;
  • оптимальная поворачиваемость колес;
  • независимость каждого отдельного колеса от остальных;
  • отдельные поперечные и продольные регулировки;
  • хороший потенциал при условии полного привода.

Однако у многорычажной подвески есть один существенный недостаток – высокая стоимость. Хотя в последнее время наметился перелом: если раньше данный тип подвески применяли только на представительских авто, то сейчас ею оснащают даже машины гольф-класса.

Перспективы производства

К сожалению, помимо несомненных преимуществ магнитная подвеска имеет основательные подводные камни. Самое проблематичное в постановке на широкое производство — его стоимость и цена установки на автомобиль. Даже ведущие автомобильные концерны не могут оснащать свои модели, резко не изменив при этом их ценник.

К тому же внедрение данной системы потребует наличия специального программного обеспечения, отдельного оборудования и специалистов по обслуживанию. Сервисы, которые могут решить ремонт такого характера, имеются, но не больше двух десятков в мире.

Еще один важный момент — вес конструкции. Подвеска Bose весит больше аналогичной McPherson в полтора раза. В наше время производители стараются сделать массу автомобиля ниже, потому этот аспект требует компромиссного решения.

В данный момент разработки и поиски решения ключевых моментов продолжаются. Инженеры тестируют экспериментальные образцы, используя различные материалы для изготовления элементов. Так, был переоборудован седан Lexus ls 99-го года для испытания новой версии электромагнитной подвески Bose. Активно ведется работа по совершенствованию программного кода и его обеспечению.

Несомненная выгода от внедрения данной системы очевидна, так что в обозримом будущем автолюбителей ждут радужные перспективы. Помимо безопасности и комфорта существенно снизится риск аварийных повреждений машины, а значит ремонт авто будет менее существенным для кармана. Это будет достаточно приемлемо по затратам и полностью оправдает их в дальнейшем.

История создания электромагнитной подвески

Одним из примеров применения энергии электромагнитного поля является электромагнитная подвеска, которая является одним из видов подвесок автомобиля и нашла активное применение в наши дни.

Мало кто знает, но первые научные труды, объясняющие принцип действия магнитного поля, пришли к нам еще раньше, чем был применен двигатель внутреннего сгорания.

Первое упоминания о диковинном приспособлении использующее физические законы, ранее неподвластные человек, принадлежат теоретическим трудам английского физика и изобретателя Майкла Фарадея.

Этот легендарный ученный еще в 1862 году первый объяснил и заложил будущий фундамент для размышлений многих умов по всему земному шару.

Вторым прародителем создания электромагнитной теории является еще один британский ученный Джеймс Клерк Максвелл. Хотя основной его пласт лишь косвенно объяснил принцип воздействия электромагнитного поля в природе, его работы во многом предопределят развитие этого течения, а также всей физики в частности.

Однако первых практических успехов в конструировании автомобилестроения на основе электромагнитного воздействия удалось добиться лишь в 1982 году. Тогда был построен первый прототип поезда, использующий магнитную подушку.

Магнитоплан M-Bahn был поистине уникальным отображением идей великих умов, однако применение его в широкой области было невозможным из-за несовершенности.

Немецкий поезд на магнитной подушке — магнитоплан M-Bahn

Обратив внимание общественности на реализм подобного изобретения, многие инженеры, осознав, что полноценный «парящий» транспорт пока лишь остается мечтой, сконцентрировались на создании менее значимых, но практичных автомобильных конструкций. Как результат, в 1980-ых годах, компания Bose первая произвела электромагнитную подвеску автомобиля, применив необходимые расчёты и вычисления

В отличие от стандартной механической подвески, электромагнитная подвеска не может применяться отдельно на разные мосты, а работает в слаженной системе одновременно на двух.

Подвески грузовиков

Как правило, в грузовиках применяется зависимая конструкция подвески с поперечными или продольными рессорами, а также амортизаторами гидравлического типа. Благодаря своей простоте такая подвеска до настоящего времени широко используется в производстве.

Кроме того, данный вариант является и наиболее простым. Это значит, что продольные рессоры фиксируются в кронштейнах кузова, а к ним подвешивается мост. Что касается амортизаторов, то они крепятся прямиком к балке заднего моста. При такой конструкции главная роль отводится рессорам, которые не только выдерживают мост, но и связывают кузов и колесо, а также выступают в качестве направляющих элементов.

Однако такая простота является определяющей лишь в производстве, тогда как водителю приходится бороться с плохой управляемостью автомобиля на высоких скоростях. Дело в том, что рессоры далеко не идеальны в роли направляющих элементов. Следовательно, сцепление колес с дорогой значительно ухудшается.

Подводя итог отметим, что рассмотренные типы подвесок автомобилей не являются исчерпывающим списком, но в наши дни они наиболее популярны, как в отечественном, так и в мировом автомобилестроении.

Назначение и устройство подвески автомобиля

При движении транспортного средства все колебания, возникшие от неровностей дороги, передаются на кузов. Задача подвески – смягчать или гасить подобные колебания. Дополнительной функцией является обеспечение соединения кузова и колес, при этом колеса имеют возможность менять расположение независимо от кузова, регулируя направление движения. Вместе с колесами, подвеска входит в число обязательных элементов ходовой части машины.

Подвеска – это технически сложное устройство, состоящее из следующих частей:

  1. Упругих элементов – металлических и неметаллических деталей, принимающих на себя всю нагрузку от движения по неровностям, и, в силу своих свойств, распределяющих ее на конструкцию кузова.
  2. Гасящих устройств (амортизаторов) – агрегатов с пневматическим, гидравлическим или комбинированным строением, нивелирующих колебания кузова, полученных от упругих частей.
  3. Направляющих деталей – различных рычагов, соединяющих подвеску с кузовом, и контролирующих смещение колес относительно друг друга и кузова.
  4. Стабилизаторов поперечной устойчивости – упругих штанг из металла, связывающих подвеску и кузов, и устраняющих возможный крен машины при движении.
  5. Колесных опор – деталей передней оси в виде поворотных кулаков, принимающих нагрузки от колес, и распределяющих их по подвеске.
  6. Средств крепления деталей, агрегатов и узлов, задача которых – соединять подвеску и кузов между собой. Это жесткие соединения на болтах, шаровые опоры или шарниры, композитные сайлентблоки.

Автомобили с электромагнитной подвеской

Несмотря на то, что разработку системы ведут еще с незапамятных времен (в следующем году, первому прототипу исполнится более 35 лет), на серийном уровне такой тип подвески не прижился. Все дело в том, что оснащение современных серийных автомобилей подобной технологией не целесообразно по высокой себестоимости подобного оборудования. Кроме того, автопроизводители прекрасно понимают, что обслуживания подобной установки потребует, как минимум специального оборудования, а также знаний по профессиональному ремонту электромагнитных систем. Проблема состоит в том, что подобных салонов, которые имеют такие возможности во всем мире найдется только десяток.

Другой стороной медали является факт большой массы используемого оборудования. Для примера, электромагнитная подвеска типа Боуза весит в более полтора раза больше чем аналог в виде подвески McPherson’a. В современном мире, где производители тщательно подходят к экономии массы автомобиля путем добавления соединений на основе карбона и магния, решение по обустройству спортивного автомобиля такой подвеской кажется слишком фантастичным. Другое дело представительские дорогостоящие седаны топ-класса, которые могли бы заиметь первые прототипы в обозримом будущем.

В процессе создания инженеры многих компаний пытались оснастить автомобили подобными системами. Например, для демонстрации возможностей очередной версии электромагнитной подвески инженеры из Bose переоборудовали седан 1999 года Lexus LS.

Подвеска на двойных поперечных рычагах

Устройство данного вида независимой подвески следующее: по обеим сторонам автомобиля поперечно расположены два рычага, которые одной стороной подвижно соединены с кузовом, поперечиной или рамой, а вторым – с амортизационной стойкой. Если это передняя подвеска, то стойка поворотная, с шаровыми шарнирами, имеющими две степени свободы, если задняя – то стойка неповоротная, с цилиндрическими шарнирами, имеющими одну степень свободы.

  • витые пружины;
  • торсионы;
  • рессоры;
  • гидропневматические элементы;
  • пневматические баллоны.

На многих автомобилях элементы подвески крепятся к поперечине, которая жестко соединена с кузовом. Это значит, что можно снять всю конструкцию целиком, как отдельный узел, и проводить ремонт в более удобных условиях. Кроме того, у производителя есть возможность выбрать наиболее оптимальный способ размещения рычагов, жестко задав тем самым требуемые параметры. Тем самым обеспечивается хорошая управляемость. По этой причине подвеска на двойных поперечных рычагах применяется в гоночных автомобилях. С точки зрения кинематики эта подвеска не имеет недостатков.

Применение

При езде кузов машины получает волны колебания, вызванные ухабами, выступами или другими неровностями, встречаемыми на дорогах. Подвеска машины гасит или смягчает возникающие колебания, предотвращая деформацию железного коня. Назначение подвески заключается в обеспечении связи между колесами и кузовом.

Благодаря деталям подвеска колеса перемещаются отдельно от кузова, из-за чего и изменяется направление движения машины. Также посредством подвески удается правильно организовать ходовую часть авто. Что касается строения, то в конструкцию входят:

  1. Упругие элементы. Изготавливаются как из металла, так и из других материалов. Упругие характеристики способствуют изменению и перераспределению получаемых колебаний на кузов.
  2. Гасящие устройства. С их помощью удается добиться нивелирования колебательных волн.
  3. Направляющие. Представляют собой набор различных деталей, имеющих строение рычага. За счет них обеспечивается соединение подвески с кузовом, а также определяется движение колес относительно кузовной оси и плоскости.
  4. Стабилизатор поперечной плоскости. Выглядит как штанга. Выполняется из металла. Стабилизатор используют для соединения подвески с кузовом. Таким образом, крен транспортного средства при движении минимален.
  5. Опоры. Их называют поворотными кулаками. На них передается нагрузка от колес, а они ее уже потом распределяют на систему.

Также в конструкцию входят крепежные элементы. С их помощью осуществляется соединение деталей и устройств. Зачастую как элементы крепления используются болты, шарниры.

Перспективы появления магнитных подвесок в будущем

Любое развитие технологий ведёт к снижению себестоимости систем в производстве. Поэтому применение активных подвесок будет расширяться, причём параллельно они обзаведутся и новыми функциями.

Например, уже сейчас ведутся работы по нескольким направлениям:

  • активные электромагниты встраиваются в подвески рабочих кресел водителей на грузовых автомобилях, что ещё более повысит комфорт;
  • системы технического зрения всё более тщательно изучают состояние дороги впереди автомобиля для максимально правильного реагирования;
  • предсказание состояние покрытия может быть связано с системами навигации, в этом случае подвеска будет настраиваться в соответствии с разметкой дорожных карт и получать дополнительную информацию по спутниковой связи.

Ведущие фирмы мира понимают всю важность и перспективность новых разработок в этой области. Так труды покойного профессора Bose не задержались в рамках основанной им компании, а были выкуплены и стали основой для новой специализированной фирмы, в которую делаются значительные инвестиции

Результаты в виде серийного внедрения должны появиться достаточно быстро.

Многообразие вариантов подвески

Устройство подвески автомобиля – это самостоятельное конструкционное решение производителя. Существует несколько типологий подвески автомобиля: их различает критерий, положенный в основу градации.

В зависимости от устройства направляющих элементов выделяются наиболее распространенные типы подвески: независимая, зависимая и полунезависимая.

Зависимый вариант не может существовать без одной детали — жесткой балки, входящей в состав моста автомобиля. При этом колеса в поперечной плоскости перемещаются параллельно. Простота и эффективность конструкции обеспечивает ее высокую надежность, не допуская развала колес. Именно поэтому зависимая подвеска активно применяется в грузовых автомобилях и на задней оси легковых.

Схема независимой подвески автомобиля предполагает автономное существование колес друг от друга. Это позволяет повысить амортизационные характеристики подвески и обеспечить большую плавность хода. Данный вариант активно применяется для организации как передней, так и задней подвески на легковых автомобилях.

Полунезависимый вариант состоит из жесткой балки, закрепленной на кузове с помощью торсионов. Данная схема обеспечивает относительную независимость подвески от кузова. Характерный ее представитель – переднеприводные модели ВАЗ.

Вторая типология подвесок основывается на конструкции гасящего устройства. Специалисты выделяют гидравлические (масляные), пневматические (газовые), гидропневматические (газо-масляные) устройства.

Определенным особняком стоит так называемая активная подвеска. Ее схема включает в себя вариативные возможности – изменение параметров подвески при помощи специализированной электронной системы управления в зависимости от условий движения автомобиля.

Наиболее распространенными изменяемыми параметрами являются:

  • степень демпфирования гасящего устройства (амортизаторного устройства);
  • степень жесткости упругого элемента (например, пружины);
  • степень жесткости стабилизатора поперечной устойчивости;
  • длина направляющих элементов (рычагов).

Активная подвеска представляет собой электронно-механическую систему, существенного увеличивающую стоимость автомобиля.

Динамическая стабилизация подвески Active Curve

Любой мотоциклист скажет вам, что заваливать байк в скоростной поворот- это естественная реакция, обусловленная физикой движущегося двухколесного тела. Мы же добавим, нам хотелось бы чтоб и автомобили так могли. Могут, уже могут! 2015 Mercedes-Benz S65 AMG Coupe обзавелся такой фантастической системой.

Суть работы системы крена Mercedes-Benz проста и сложна одновременно. При помощи датчика бокового ускорения, совмещенного с передней видеокамерой, S65 следит за поворотами и в нужный момент подключает свою пневмоподвеску наклоняя кузов в сторону апекса поворота (к вершине траектории поворота). Автомобиль проходит вираж стабильнее и без сильных кренов. Правда основной целью является не повышение скорости прохождения изгиба дороги, а, скорее, повышение комфорта, так как пассажиры испытывают меньшие боковые нагрузки на скорости. Возможно в будущем похожие технологии появятся и на бюджетных автомобилях.

P.S. Эта же система может отлично подойти и для работы на бездорожье. Разработки уже ведутся.

Многорычажная подвеска

Как работает многорычажная подвеска

Эта конструкция может использоваться как в передней, так и в задней подвеске. Чтобы достичь оптимальной кинематики колес, и тем самым добиться лучшей устойчивости и управляемости, конструкторы используют четыре – пять рычагов. Зачем столько много? Два удерживают колесо, остальные задают необходимую кинематику.

И теперь совсем не обязательно совмещать амортизатор и пружину в амортизационную стойку – некоторые конструкции подразумевают упор пружины о нижний рычаг. Правда, в этом случае разместить ШРУС крайне затруднительно, поэтому такие схемы применяются на автомобилях классической компоновки, то есть, с приводом на задние колеса. Можно подумать, что чем больше рычагов, тем лучше. В каком-то смысле это так. Но при этом конструкция становится сложнее, дороже и тяжелее. В принципе, то же можно сказать и о многорычажных подвесках задних колес, благодаря которым и достигаются «изящная» управляемость и «воздушный» комфорт, но достигаются они ценой увеличения размеров, массы и конструктивной сложности. Однако для автомобилей с классической компоновкой это необходимость, потому что в данном случае задние колеса являются ведущими. По этой же причине и на полноприводных легковых машинах сзади, как правило, используется независимая многорычажная подвеска.

Конструкция многорычажной подвески

Неисправности и обслуживание подвески

Сразу же оговоримся: согласно российским правовым нормам, ни одна неисправность подвески не отнесена к «Перечню…» неисправностей, с которыми запрещается движение. И это спорный момент.

Представим, что амортизатор подвески (передней или задней) не работает. Такое явление означает, что проезд каждой неровности будет сопряжен с перспективой раскачки кузова и потерей управляемости автомобиля. А что можно сказать о вконец разболтавшейся и пришедшей в негодность шаровой опоре передней подвески? Результат неисправности детали — «вылетела шаровая» — грозит серьезным ДТП. Лопнувший упругий элемент подвески (чаще всего пружина) приводит к возникновению крена кузова и подчас абсолютной невозможности продолжать движение.

Описанные выше неисправности – это уже конечные, наиболее одиозные неисправности подвески автомобиля. Но, несмотря на их крайне негативное влияние на безопасность движения, эксплуатация транспортного средства с такими проблемами не запрещается.

Большую роль в обслуживании подвески играет контроль за состоянием автомобиля в процессе движения. Скрипы, шумы и стуки в подвеске должны насторожить и убедить водителя в необходимости сервисного обслуживания. А длительная эксплуатация автомобиля вынудит его применить радикальный метод – «поменять подвеску по кругу», то есть заменить практически все детали и передней, и задней подвески.

Мне нравится4Не нравится

Подвеска Мак-Ферсон

Устройство подвески Мак-Ферсон

Она имеет целый ряд преимуществ над другими схемами, важнейшие из которых – компактность, легкость и простота конструкции, а стало быть, низкая стоимость самой подвески в изготовлении (что немаловажно для производителя) и ремонте (что уже небезразлично владельцу автомобиля). Судите сами: на каждое колесо приходится всего по одному рычагу

А это – минимум сайлент-блоков и шаровых опор, то есть, минимум веса и максимум надежности. Нет необходимости в погоне за снижением неподрессоренных масс использовать алюминий и прибегать к другим ухищрениям. Через сайлент-блоки поперечный рычаг крепится к подрамнику (поперечной балке), через шаровую опору он соединен с поворотным кулаком колеса.

Роль верхнего рычага выполняет сам кузов автомобиля, к которому крепится амортизационная стойка (амортизатор плюс пружина). Для переднеприводных автомобилей особо малого и малого классов такая конструкция еще долго будет оставаться актуальной, хотя бы даже из-за ее компактности, но при конструировании моделей более высоких классов от схемы McPherson постепенно отказываются.

Основная причина – в неидеальной кинематике, которую задает колесу подвеска. Кроме того, это ограниченный комфорт при движении. Ведь все удары, приходящиеся на колесо, в той или иной степени передаются через верхнюю опору амортизатора и на кузов, снижая ездовой комфорт. Но хуже то обстоятельство, что при сильных ударах и сам амортизатор, и кузов оказываются уязвимыми, что потенциально грозит их преждевременным износом или даже разрушением.

Как работает магнитная подвеска

Современные механизмы, называемые магнитными подвесками, эксплуатируют принцип работы, в основе которого лежит явление электромагнетизма. Этот эффект описывает зависимость между двумя видами поля: электрического и магнитного.


Стандартные продукты, устанавливаемые на автомобилях, исполняют свою основную задачу благодаря таким элементам конструкции как пружины и упругие детали. Электромагнитные подвески, в качестве основных элементов, используют электромагниты. Именно из-за такого механического состава современные подвески и получили свое название.

Схема работы устройства заключается в создании особой системы управления (control system) путем установки на транспортное средство бортового компьютера. Данный компьютер, также именуемый электронным узлом, в real-time режиме снимает характеристики колесного ряда, и, в зависимости от них, посылает соответствующие команды. Управление осуществляется достаточно простым образом: схема намного проще по своей сути, чем те же пружины или гидравлические конструкции или маховик.

Принцип работы

Посредством работы схемы сила колебаний преобразуется в энергию, которая затем перемещает упругие элементы. Нагрузка от колес постепенно переходит на пружину, и кочка становится не такой страшной. При желании можно настроить жесткость перемещения элементов упругости, и, если есть такая необходимость, смягчить действие гасящих деталей.

Плавность хода авто обеспечивается за счет уменьшения силы удара. Чтобы убедиться в этом, стоит посмотреть видео в интернете — таких роликов полно.

Следует отметить, что автомобили обладают различными по типу жесткости подвески. И чем жестче конструкция, тем эффективнее будет управление транспортным средством, но от этого пострадает комфорт сидящих в салоне. И, наоборот, если будет обеспечено удобство эксплуатации, может пострадать управляемость. Ни то, ни другое недопустимо. Поэтому владельцы авто стремятся найти наиболее верное решение путем выбора подходящей системы подвеска.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Драйвер
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: