Правила установки и подключения
Выбирать и устанавливать коллектор лучше всего еще на этапе проектирования и монтажа отопительной системы.
Устанавливают такие промежуточные конструкции в помещениях, защищенных от избыточной влажности. Чаще всего для этих целей отводят место в коридоре, кладовой или гардеробной.
Коллекторный блок желательно размещать в специально предназначенном для этого металлическом шкафу, оснащенным в боковых стенках отверстиями под выведение труб
В продаже встречаются накладные и встраиваемые модели металлических шкафов. Каждая модель оснащена дверцей и выштамповкой по боковым сторонам.
За неимением возможности установить металлический шкафчик, поступают проще, фиксируя устройство прямо на стену. Нишу под обустройство коллекторного блока размещают на небольшой высоте относительно пола.
Общепринятой инструкции по монтажу коллекторных распределительных схем по сути нет. Но есть ряд основных моментов, относительно которых специалисты пришли к единому знаменателю:
- Наличие расширительного бака. Объем конструктивного элемента должен составлять не менее 10% от общего количества воды в системе.
- Наличие циркуляционного насоса для каждого проложенного контура. Относительно этого элемента не все специалисты едины во мнении. Но все же, если планируется задействовать несколько независимых контуров, для каждого из них стоит установить отдельный агрегат.
Перед циркуляционным насосом на магистрали обратной подачи размещают расширительный бак. Благодаря этому он становится менее уязвимым к турбулентности потоков воды, часто возникающих в этом месте.
Если же используется гидрострелка – бак монтируют перед основным насосом, основная задача которого состоит в том, чтобы обеспечивать циркуляцию на малом контуре.
Место расположения циркуляционного насоса не принципиально. Но, как показывает практика, ресурс устройства несколько выше именно на «обратке».
Главное при монтаже – расположить вал строго горизонтально. При несоблюдении этого условия первый же пузырь скопившегося воздуха оставит агрегат без охлаждения и смазки.
Сам процесс сборки и подключения коллекторной системы наглядно представлен в видео-блоке.
Нужна ли технология?
Последовательное образование впускного тракта, который создают дроссель, фильтр, клапана, оказывает сильное влияние на процесс заполнения цилиндров горючим. Воздушная смесь, которая проходит по этому тракту, существенно колеблется. Вместе с другими деталями образуют ударную систему. Это приводит к зависимости процессов наполнения цилиндров от факторов колебательной конфигурации.
Получение эффективности работы системы при требуемых параметрах и нужном диапазоне, представляется крайне сложной процедурой. Как следствие – идея изменения показателей колебательной системы во время эксплуатации. После проведения исследований, можно утверждать, что двигатель хорошо работает с высокими оборотами при коротком впускном коллекторе. Дело обстоит наоборот с низкими оборотами, эффективности можно достичь при длинном впускном тракте.
Логично, что напрашивается вывод создать впускной тракт переменной длины. Это позволит им управлять, учитывая различные нагрузки и обороты.
Назначение выпускного коллектора двигателя
Выпускной коллектор — одна из важнейших деталей системы выпуска отработанных газов двигателей внутреннего сгорания. Коллектор выполняет две ключевых функции:
- Сбор и отвод отработанных газов из цилиндров, сбор газов от всех цилиндров в одну приемную трубу;
- Помощь в продувке цилиндров и эффективном заполнении цилиндров новой порцией горючей смеси.
Неправильно считать, что коллектор — это просто сборщик выхлопных газов (собственно, это слово является калькой с английского collector — сборщик или собиратель). В действительности это деталь, с помощью которой осуществляется настройка выхлопа, повышающая эффективность и мощность двигателя. Это легко объясняет теория ДВС и коллектора.
Работа двигателя происходит циклично, в обычных четырехтактных моторах удаление отработанных газов из каждого цилиндра (а равно и заполнение цилиндра горючей смесью) происходит один раз в два оборота коленчатого вала. Об этом нужно помнить, чтобы понять суть происходящих в выхлопной системе процессов.
Отработанные газы, выходящие из цилиндра при открытии выпускного клапана, имеют высокое давление, поэтому они с высокой скоростью устремляются в коллектор. За этой порцией газа образуется разрежение (падение давления воздуха), которое играет важнейшую роль в продувке цилиндра. Непосредственно перед достижением поршня ВМТ наступает момент, когда открыты как выпускные, так и впускные клапаны. Поэтому воздух спокойно проходит через цилиндр из впуска в выпуск, обеспечивая удаление остатков отработанных газов и более полное заполнение цилиндра топливно-воздушной смесью.
Однако газы из цилиндра не просто выходят — они движутся по коллектору, достигают приемной трубы и ударяются о катализатор или глушитель (в зависимости от того, как устроена система выпуска ОГ конкретного автомобиля). Катализатор и глушитель — это довольно ощутимые препятствия для движущихся с большой скоростью газов, поэтому часть газов (около половины всего объема) не проходит дальше, а отражаются и возвращаются к цилиндру, там они снова отражаются и идут в сторону глушителя, и т.д. Так в коллекторе возникает волновой процесс (резонанс), который оказывает серьезное влияние на работу двигателя.
Дело в том, что газы могут вернуться к цилиндру до начала или в самый момент открытия выпускного клапана, и ухудшить выход новой порции отработанных газов. Это снизит эффективность работы двигателя и его мощность. Если же газы вернутся к цилиндру и отразятся до начала открытия выпускного клапана, то здесь вновь образуется разрежение воздуха, которое будет помогать выходить новой порции отработанных газов.
Здесь есть и еще один важный момент. Обычно коллекторы всех или двух цилиндров сходятся в одной точке, поэтому отработанные газы одного цилиндра будут оказывать влияние на работу других цилиндров. Например, в двигателях с порядком работы цилиндров 1-3-4-2 газы из первого цилиндра могут столкнуться с газами из третьего цилиндра, что ухудшит их отвод и снизит эффективность мотора. С другой стороны, газы от третьего цилиндра могут идти вслед за газами первого цилиндра, и в этом случае порция газа первого цилиндра вследствие образуемого ща ним разрежения будет «тянуть» за собой порцию газов третьего цилиндра, повышая эффективность их отвода и продувки цилиндра.
Поэтому важнейшая задача конструкторов заключается в том, чтобы подобрать оптимальную длину выпускного коллектора, при которой отработанные газы образовывали бы стоячие волны с областями разрежения в некоторых определенных областях — у выпускного клапана, в месте встречи потоков газов от двух цилиндров и т.д. Это называется настройкой выпуска, и благодаря ей современные двигатели максимально полно используют свой потенциал.
Настройка выпуска имеет свои сложности, например — коллектор малой длины эффективен на высоких оборотах, а коллектор большой длины проявляет себя на малых оборотах. А так как обычный двигатель может работать в широком интервале оборотов, то приходится идти на компромисс и рассчитывать коллектор только на какой-то средний интервал оборотов.
Цели, которые ставятся перед выпускными коллекторами, достигаются с помощью различных технических решений, что проявляется многообразием конструкций коллекторов.
Эксплуатация выпускных коллекторов
Типичные неисправности выпускных коллекторов:
- Повреждение прокладки между коллектором и блоком цилиндра. Для уплотнения узла соединения «блок цилиндров – выпускной коллектор» применяется прокладка, которая изготавливается из паронита, металла либо композитных материалов. Под действием давления и высоких температур со временем прокладка разрушается, что приводит к нарушению герметичности. Часть газов прорывается, напрямую в атмосферу, двигатель работает нестабильно.
- Деформация фланца труб коллекторов. Температура выпускного коллектора может достигать 900 ºС. При нарушении температурных режимов коллектор подвергается деформации, которая может вызвать повреждения резьбовых соединений крепежа коллектора. Например, болты выпускного коллектора может просто «сорвать» (повредить резьбу). К таким последствиям приводит нарушение режима работы двигателя либо излишний тюнинг.
- Физические повреждения, нарушение герметичности. Выпускной коллектор работает в агрессивной среде, поэтому со временем и пройденными километрами чугунные коллекторы лопаются, а трубчатые стальные — могут прогореть. Это негативно отражается на работе двигателя. Даже небольшая трещина в выпускном коллекторе вызывает нарушения работы выхлопной системы. В случае, если трещина незначительная, проблема какое-то время может себя не проявлять.Симптомами могу быть:
- ошибки блока управления двигателем;
- нестабильные обороты двигателя — плавные перепады 300-500 единиц;
- звук двигателя с ненастроенным зажиганием;
- в подобных случаях определяется сильно прогоревшая труба.
- Засорение каналов выпускной системы. На стенках выпускных коллекторов образуется нагар и ржавчина. Подобные отложения могут привести к уменьшению просвета каналов и ухудшению характеристик двигателя.
Трубчатый выпускной коллектор с деформированной стыковочной пластиной «фланцем»
Для того, чтобы избежать вышеперечисленных неисправностей, следует помнить, что выпускной коллектор — узел двигателя, который стоит осматривать при плановом техническом обслуживании чуть ли не в первую очередь.
Трубчатый выпускной коллектор с набором прокладок и крепежа
Принцип действия коллекторов с изменяемой геометрией
Преобразование впускного коллектора на практике может быть реализовано двумя методами: изменением площади сечения и изменением его длины. Эти методы могут применяться по отдельности или в комплексе.
Особенности впускного коллектора с изменяемой длиной
Впускной коллектор переменной длины
Технология изменения длины впускного коллектора применяется для автомобилей с двигателями, работающими как на бензине, так и на дизеле, за исключением систем с наддувом. Принцип работы такой конструкции состоит в следующем:
- При низкой нагрузке на двигатель воздух проходит по длинному пути.
- При высоких оборотах двигателя – по короткому.
- Изменение режима работы осуществляется ЭБУ двигателя посредством привода, который переключает клапан между двумя ветками коллектора.
Работа впускного коллектора с переменной длиной основана на получении эффекта резонансного наддува. Он обеспечивает интенсивное нагнетание воздуха в камеру сгорания. Происходит это следующим образом:
- После закрытия всех впускных клапанов в коллекторе остается некоторое количество воздуха.
- В трубопроводе коллектора возникают колебания остатков воздуха, пропорциональные длине впускного коллектора и частоте оборотов двигателя.
- Когда эти колебания достигают резонанса, возникает высокое давление.
- При открытии впускного клапана осуществляется нагнетание.
Для двигателей, имеющих наддув, этот вид впускных коллекторов не применяется в силу отсутствия необходимости создания резонансного наддува. Нагнетание воздуха в таких системах выполняется принудительно предустановленным турбокомпрессором.
Особенности впускного коллектора с переменным сечением
Впускной коллектор с переменным сечением
В автомобилестроении изменение сечения впускного коллектора применяется на автомобилях, оснащенных двигателями, работающими как на бензине, так и на дизеле, в том числе для систем, оснащенных наддувом. Чем меньше сечение трубопровода, по которому подается воздух, тем выше скорость потока, а следовательно, и смешение воздуха и топлива. В такой системе каждый цилиндр имеет два впускных канала, оснащенных собственными впускными клапанами. Один из пары каналов имеет заслонку. Привод такой системы изменения геометрии впускного коллектора осуществляется электродвигателем или вакуумным регулятором. Принцип действия конструкции представляет собой следующий процесс:
- Когда двигатель работает на малых оборотах, заслонки находятся в закрытом положении.
- При открытии впускного клапана топливовоздушная смесь (воздух) поступает в цилиндр только по одному каналу.
- При подаче через один канал воздушный поток входит в камеру по спирали, обеспечивая лучшее смешение с топливом.
- Когда двигатель работает на высоких оборотах, заслонки открываются, топливовоздушная смесь (воздух) поступает по двум каналам, что обеспечивает увеличение мощности мотора.
Выпускной коллектор
Итак, второй претендент, он также выполняет немаловажную роль – отвод сгоревших газов. После того как впускные клапана были закрыты, топливо сжимается и поджигается свечой зажигания – происходит мини взрыв, поршни идут вниз – открываются выпускные клапана и отводят сгоревшие газы.
Вот только после клапанов они должный выйти в глушитель, а собирает их, из каждого цилиндра как раз выпускной коллектор (также по одной трубе на цилиндр). Он также подсоединен своей широкой частью к головке блока, только (если утрировать) с другой стороны, далее по трубам газы собираются в одну большую, как правило, сначала стоит катализатор, который дожигает газы, затем после него уже идет глушитель (может стоять и отвод для турбины). После этого газы уходят дальше после в окружающую среду. Стоит упомянуть – этот тракт гасит не только отработанные газы, но и звук выхлопа! Точнее не он сам, а глушитель которую он передает «отработку».
Как вы понимаете выпускной коллектор, работает с высокими температурами, ведь зачастую выхлоп может разогреваться до 950 градусов Цельсия. Поэтому обязательно нужно применять металлы, да не простые, а тугоплавкие способные выдерживать высокие показатели «тепла».
В этот отводящий коллектор, зачастую вкручивают датчик, это «лямба-зонт» или кислородный датчик, он «следит» за содержанием кислорода и других газов в выхлопе.
Благодаря этому датчику корректируется подача топливной смеси через наш «подающий» коллектор, то есть получается взаимосвязь.
Выпускной тракт, обычно в автомобилях очень прочный, служит почти весь срок эксплуатации автомобиля.
Из теории газообмена в ДВС
Из принципа работы 4-х тактного двигателя мы знаем, что при движении поршня к НМТ и открытом впускном клапане воздух из впускного коллектора направляется в цилиндр.
Если принять свободный объем камеры сгорания, который может быть заполнен воздухом за 1, то на практике, вследствие различного рода потерь, коэффициент наполнения цилиндров атмосферного двигателя составляет 0,7-0,8 (у турбированных двигателей этот параметр выше и зависит от производительности нагнетателя). Проблема питания двигателя воздухом является одной из главных в процессе создания двигателя, так как производительность современных форсунок позволяет вливать в цилиндры огромные дозы топлива. Но это топливо сгорит неэффективно либо и вовсе не воспламенится, если в камере сгорания не будет достаточного количества окислителя, то бишь воздуха.
Понятие резонансного наддува
Но на чем именно основан принцип работы? Поскольку воздух имеет массу, в процессе движения на такте впуска он набирает кинетическую энергию. В момент закрытия впускного клапана оставшийся в коллекторе воздух по инерции направляется к перекрытому каналу, ударяется в стенку и резонирует, возвращаясь к дроссельному узлу. Элементы дроссельной заслонки, конструкция ресивера и патрубков также создают противодействие воздушному потоку, что заставляется его снова возвратиться в направлении клапана. Если в этот момент открыть впускной клапан, то на такте впуска в цилиндр попадет максимально возможное в этой режимной точке работы двигателя количество воздуха. Подобное явление называется резонансным наддувом. Отчасти именно поэтому геометрией каждого двигателя определен конкретный диапазон оборотов, на которых наполняемость цилиндров наиболее оптимальна.
Преимущество изменяемой геометрии
Частота колебаний воздушных потоков в первую очередь зависит от количества оборотов двигателя, но также и от длины и сечения каналов впускного коллектора. Объясняется это тем, что на низких оборотах скорость движения поршня меньше, следовательно, и частота резонирования потоков воздуха уменьшается. Чем уже канал, тем большую скорость развивает движущийся поток воздуха. Для лучшего наполнения цилиндров узкий и длинный канал должен быть на низких оборотах двигателя. Тогда как на высоких оборотах небольшое сечение канала будет создавать сильные насосные потери, ведь в режиме пиковых нагрузок двигатель потребляет намного больше воздуха, нежели на низких оборотах.
Внедрение изменяемой геометрии впускного коллектора преследует 2 цели:
возможность подстраивать резонанс потоков воздуха под обороты двигателя;
регулировать скорость движения потока и массу поступающего воздуха. Проходя через более узкий канал, поток набирает гораздо большую скорость
Это повышает турбулентность в цилиндре и улучшает перемешивание топливно-воздушной смеси, что немаловажно для полноценного сгорания топлива. Канал меньшей длины и большего сечения позволяет полноценно питать двигатель воздухом на высоких оборотах.
Вентиляция картера
Система вентиляции картерных газов предназначена для того, чтобы снизить давление в картере двигателя. Давление там образуется по причине попадания выхлопных газов при работе двигателя. Для этого картер посредством патрубка соединен с зоной пониженного давления или с зоной разрежения. В атмосферных двигателях внутреннего сгорания это как раз впускной коллектор. Если мотор турбированный, то вентиляция картера подключается к входному патрубку на турбокомпрессоре.
В любой турбине имеется магистраль, предназначенная для слива масла. Она соединяется со смазочной системой двигателя. Чаще всего данная магистраль подключается ниже уровня масла в картере. Поэтому, когда давление возрастает, масло из турбокомпрессора не может нормально удаляться. Также такая проблема может быть по причине засора сепаратора. Это один из узлов в системе вентиляции. Также может быть закоксован патрубок.
Устройство и принцип работы
Чтобы впускной коллектор выполнял все возложенные на него задачи, он должен иметь строго рассчитанную геометрическую форму. Например, для того, чтобы поток внутри не замедлялся, коллектор проектируется без углов и прямых линий. Плавные изгибы, округлая форма способствуют более мощному воздушному потоку.
Устройство впускного коллектора
На входе во впускной коллектор находится карбюратор или дроссельная заслонка, если речь идет об инжекторном двигателе. Центральный канал разделяется на отдельные рукава – раннеры, которые подходят к цилиндрам, а точнее, к впускным клапанам.
Топливные форсунки размещаются возле впускных клапанов (в системе распределенного впрыска) или в центральном канале, если установлен моновпрыск.
По форме впускного канала различают одноплоскостные и двухплоскостные:
- Одноплоскостные – только с одним каналом для прохождения воздуха или топливно-воздушной смеси. Эти коллекторы пропускают за единицу времени большое количество воздуха, а значит, позволяют двигателю развить максимально возможную мощность на высоких оборотах;
- Двухплоскостные – те, в которых канал разделен на две части. Они дают возможность получить больше отдачи мощности на низких и средних оборотах двигателя.
Материалы.
Изначально впускные коллекторы делались металлическими: из чугуна, стали, алюминия. Проблема таких конструкций не только в достаточно высокой цене, но и в значительном нагреве от цилиндров двигателя. Сегодня их в основном делают из специального термостойкого пластика, который обладает меньшей теплопроводностью, а значит, и меньше нагревает воздух внутри.
Принцип работы.
Основной принцип работы коллектора – подача воздуха на фазе впуска. Инициатором движения воздуха является сам двигатель. Когда поршень опускается, в камере сгорания над ним создается зона низкого давления. На фазе впуска, когда клапан открыт, опускающийся поршень затягивает воздух, как хороший насос. Таким образом, от центрального канала воздух поступает в нужный раннер, а из него – в камеру сгорания. На видео-3д анимации, ниже, наглядно показан принцип работы впускного коллектора с вихревыми клапанами.
Если на автомобиле установлен карбюратор или центральная форсунка, при втягивании воздуха в раннер, поток топлива (или топливно-воздушной смеси) поступает в нужный цилиндр. Благодаря тому, что поток внутри коллектора турбулентный, топливо лучше перемешивается с воздухом и, следовательно, лучше сгорает. Турбулентный воздушный поток проектируется в коллекторе специально: он быстрее движется и лучше наполняет цилиндры.
В автомобилях с распределенным впрыском форсунки установлены в раннерах коллектора перед впускными клапанами. В этом случае по коллектору движется только воздух, который смешивается с распыленным топливом перед самым входом в цилиндр двигателя. Здесь скорость и структура воздушного потока также важны, поскольку для качественного приготовления топливно-воздушной смеси остается меньше времени и места.
Резонансные колебания.
Чтобы усилить поток поступающего воздуха, внутренняя геометрия впускного коллектора рассчитывается так, чтобы образовался так называемый резонанс Гельмгольца. Примерная схема, как это работает:
- На фазе всасывания поршень мотора опускается вниз, создавая зону разрежения, и через открывшийся клапан в камеру сгорания на большой скорости заходит воздух;
- Однако объем раннера намного больше, чем объем цилиндра, поэтому весь воздух, который “взял разгон” в коллекторе, в камеру сгорания не попадает;
- Перед закрывшимся впускным клапаном создается зона повышенного давления, когда воздух по инерции продолжает движение вперед;
- Клапан всё еще закрыт, так что давление в раннере выравнивается, то есть происходит “откат”, а после него перед впускным клапаном опять образуется зона повышенного давления. Эти резонансные колебания воздуха зависят от формы и размера коллектора и рассчитываются под каждый двигатель отдельно.
Рабочий механизм (пневмокамера) системы изменения длины впускного коллектора
Это самое слабое звено в этой цепи. Пневмокамера состоит из корпуса (металлического или пластикового), штока, диафрагмы и пружины.
Чаще всего система изменения геометрии впускного коллектора выходит из строя именно из-за изношенной диафрагмы пневмокамеры. Её можно назвать расходным материалом.
Чтобы проверить целостность пружины и диафрагмы, достаточно отсоединить вакуумную трубку и вдавить шток. Шток должен войти без заеданий, а при отпускании — должен резко выдвинуться. Значит пружина цела и ось заслонок не заедает.
Теперь вдавливаем шток и закрываем штуцер пальцем. Шток не должен выходить из пневмокамеры полностью. Если выходит — значит диафрагма порвана.
Вот видео работы рабочего механизма с немного износившейся диафрагмой. Смотрите внимательно
Диафрагма ещё кое-как работает. Шток на холостом ходу втягивается, но стоит немного нажать педаль газа, как шток немного выходит. Это происходит, потому что при открытии дроссельной заслонки в коллекторе возрастает давление и уменьшается разрежение. И этого разрежения уже не хватает для удержания порванной диафрагмы. Хотя целую диафрагму оно удержало бы без проблем.
По достижении оборотов 4,5 тыс.об/м, шток выдвигается полностью, как должно и быть. Значит вся система работает исправно, кроме диафрагмы.
Но главная проблема даже не в том, что теперь коллектор некорректно переводится в длинный/короткий. Вернее, это тоже большая проблема, но есть и ещё более серьёзная.
Дело в том, что до 4,5 тыс.об/м электромагнитный клапан открыт и, естественно, пускает разрежение в пневмокамеру с порванной диафрагмой, что приводит к подсосу неучтённого воздуха во впускной коллектор! Из-за этого происходит нарушение корректной работы двигателя на малых и средних оборотах. Наблюдаются провалы, дергания, возрастание оборотов холостого хода и, соответственно расход топлива ещё больше бьёт по карману.
Поэтому пневмокамеру в обязательном порядке необходимо заменить.
Если Вы заметили, что диафрагма испорчена, а до дома ещё очень далеко и нет возможности купить новую пневмокамеру, тогда можно поступить следующим образом:
Отсоединить вакуумную трубку от коллектора, а штуцер на коллекторе заглушить
Внимание!!! Только заглушку нужно искать, которая наденется НА штуцер (например, шланг загнуть и закрепить проволокой, резиновую часть от медицинской пипетки и т.п.), а НЕ в штуцер (спички, зубочистки и т.п.). Нужно именно так для того, чтобы Вашу заглушку не засосало в коллектор! Я использовал загнутый и обжатый проволокой кусочек вакуумного шланга
Утопить шток пневмокамеры и зафиксировать его в этом положении проволокой, хомутом или чем-то подобным.
Так можно спокойно ехать, куда глаза глядят. Но помнить, что на высоких оборотах двигателя динамика будет чуть хуже.
Виды компоновки труб коллекторов
Выпускной коллектор с компоновкой 4-1. Представляет собой четыре трубы-канала, соединенных в одну общую трубу (количество каналов соответствует количеству цилиндров).
Трубчатый коллектор 4-1
Выпускной коллектор 4-2-1. В таких коллекторах трубы сначала соединяют цилиндры, работающие в паре (на одном такте), а потом переходят в одну общую трубу.
Выхлопная система 4-2-1
Важным параметром выпускных коллекторов является их длина, а соответственно — и объем. При недостаточной длине выпускных каналов энергии потоков выхлопных газов будет достаточно, чтобы попасть в каналы соседних цилиндров и негативно влиять на их работу. В таких коллекторах плохо синхронизированы волновые движения газов с работой двигателя. В тоже время на двигателях с небольшой длинной выпускного коллектора, как правило, «узкие» фазы газораспределения с относительно небольшим объемом выхлопных газов. Производство коллекторов с малой длиной оправдано низкой стоимостью.
Цельный коллектор 4-1 с малой длиной выпускных каналов
На мощных и производительных двигателях используются длинные выпускные коллекторы. В таких коллекторах часть объема выхлопных газов стремится по общей трубе в следующие узлы выхлопной системы, а часть — «отражается» к остальным цилиндрам. Для перехода волны из одного цилиндра в другой потребуется значительно больше времени, что создает определенно лучшие условия для разряжения и продувки.
Комплект выхлопной системы 6-2-1
Выпускной коллектор с равной длиной выпускных труб (равнодлинный). Как правило, устанавливается на мощные спортивные автомобили.
Сложный равнодлинный выпускной коллектор,изготовленный из труб
Равнодлинный коллектор позволяет равномерно осуществить выпуск во всех цилиндрах и лучше синхронизировать работу двигателя с выхлопной системой. Тюнинг выпускного тракта можно делать на любом двигателе. Это гарантированно принесет дополнительные 3-5% мощности.
Проблема с температурой решается установкой теплоизоляции. Для этого можно использовать металлический кожух либо специальную негорючую ткань.
Существуют модели коллекторов, в которых в качестве теплоизоляции применяется керамическое напыление.
Кожух выпускного коллектора
Каналы коллектора, изолированные специальной тканью
Выпускной коллектор и улитка турбины c керамическим напылением
Доступные методы увеличения подачи воздуха
От количества попадающего воздуха зависит мощность двигателя. Установка турбины – метод радикальный, однако существуют более простые и дешевые способы:
Установка воздушного фильтра нулевого сопротивления
К данному способу относятся скептически, но эффективность ФНС доказана. Оправдана установка подобного фильтра только в случае комплексного тюнинга, но и без того прибавляет скромных 1-3% мощности за счет снижения сопротивления, а значит, увеличения объема воздуха в камере сгорания.
Холодный впуск
Существуют готовые комплекты холодного впуска. Не на всех автомобилях воздухозаборник способен забирать холодный воздух, температура подкапотного пространства не позволяет.
Конструкция холодного впуска дает возможность попадать в коллектор холодному воздуху, а значит в цилиндры попадает больше воздуха – горение смеси будет более эффективно.
Установка впускного коллектора с иной геометрией
Для автомобилей ВАЗ предусмотрены коллектора под разные потребности: с короткими каналами — мотор будет «верховым», с длинными каналами обеспечить достаточный крутящий момент с холостых до средних оборотов.