Турбокомпаунд, назначение, принцип работы

Принцип работы турбодетандерных установок

Прохождения газа или сжиженных газовых смесей происходит через отверстия неподвижных направляющих каналов, исполняющих функции сопел. В этом месте потенциальная энергия газа частично преобразуется в кинетическую, благодаря которой приводятся в действие вращающиеся лопаточные каналы ротора. Резкое расширение газа приводит к падению давления, в результате чего ротором совершается механическая работа с одновременным интенсивным охлаждением газового потока. Одновременно с ротором вращается колесо компрессора, насаженное на него.

Как правило, при использовании установок в промышленности, на входе турбины поддерживается постоянное давление в соответствии с проектным уровнем. В такой ситуации давление регулируется специальными клапанами, что не совсем рационально. Более эффективными считаются турбины с переменным давлением при полностью открытых входных клапанах. Используемые клапана должны иметь максимально большие размеры. Это позволяет достигнуть необходимого дросселирования при перепадах давления всего лишь 5-10%. Для традиционных клапанов этот показатель составляет 25 – 50% из-за слишком малых размеров. То же самое касается насосов, создающих давление газа. Они подбираются в соответствии с конкретными условиями эксплуатации.

Наиболее оптимальным вариантом является применение турбодетандера для производства электроэнергии за счет избыточного давления. Одновременно, газ, проходящий через агрегат, используется по прямому назначению, независимо от режима работы и без каких-либо потерь. Таким образом, весь цикл представляет собой термодинамический обратимый процесс.

Основные виды реле и их назначение

Где применяют турбокомпаунд

Компания Scania нашла широкое применение для турбокомпаунда в разрабатываемых ей дизельных двигателях для грузовых автомобилей. Для примера можно взять дизельный двигатель DT 12 02, разработанный компанией в 2001 году и имеющей 12 цилиндров. Если раньше, работая как обычный турбо дизель DT 12 02 развивал мощность 420 л.с., то после внедрения турбокомпаундого блока его мощность возросла до 470 л.с. Турбокомпаундый блок может устанавливаться практически на любые дизельные двигателя для грузовых автомобилей от компании Scania, было бы желание заказчика.

Чтобы было понятно, благодаря внедрению турбокомпаунда было достигнуто: • Повышение мощности двигателя при не относительно не высоких частотах вращения коленвала двигателя; • Экономия топлива; • Устойчивость работы двигателя при резких перепадах в режимах работы автомобиля; • Мягкая, без рывковая работа двигателя, что достигается постоянной передачи дополнительной мощности от турбокомпаунда к коленвалу, благодаря чему выравнивается пульсация нагрузок. • Более комфортное вождение автомобиля, на котором установлен турбокомпаунд. Технологии не стоят на месте. Стремление увеличения эксплуатационных качеств двигателей за счет его скрытых возможностей является перспективным направлением для многих автомобильных компаний и пример с турбокомпаундом, который реализовала компания Scania, является хорошим примером для подражания.

Устройство и схема КПП К-700, К-701

В данной статье мы рассмотрим устройство и принцип работы коробки переключении передач тракторов «Кировец» К-700 и К-701, т.к. их строение полностью идентично. Также приведем основные моменты в регулировке, обслуживании и ремонта данного механизма….

Что такое сминаемые зоны автомобиля

Всякий раз, когда автомобиль попадает в аварию, действуют сильные кинетические силы. В любой аварии присутствует определенное количество энергии. Фактические цифры варьируются в зависимости от скорости и массы автомобиля, а также от скорости и массы…

Приводные ремни агрегатов двигателя являются предметом регулярного технического обслуживания автомобилей. Громкий свист, плохая зарядка аккумулятора и даже перегрев — это симптомы, которые должны побудить вас проверить приводные ремни вашего двигател…

Устройство и схема КПП К-700, К-701

В данной статье мы рассмотрим устройство и принцип работы коробки переключении передач тракторов «Кировец» К-700 и К-701, т.к. их строение полностью идентично. Также приведем основные моменты в регулировке, обслуживании и ремонта данного механизма….

Замена амортизаторов задней подвески 2114

Статья для всех, у кого возникла необходимость в замене амортизатора и пружины на задней подвеске на автомобилях ВАЗ 2114. Легче всего работы проводить на смотровой яме, но можно и сделать это на ровной площадке. Амортизаторы и пружины нужно менять п…

Замена наконечников рулевых тяг ВАЗ 2114

Рулевая тяга соединяет рулевую рейку и рулевой наконечник. При большом износе шарнира рулевой тяги на плохой дороге появляются неприятные стуки, а так же начинает бить руль, в данном случае наконечники рулевых тяг придется снять и заменить на новые….

Замена рулевой рейки ВАЗ 2114

Фото и видео инструкция по самостоятельному снятию рулевой рейки с автомобилей девятого семейства ЛАДА, ВАЗ 2113, 2114, 2115. Для проведения работ вам потребуется помощник. Процесс снятия1. Отсоед…

Принцип работы турбокомпрессора и его недостатки

Видео: Принцип работы турбокомпрессора (турбины)

Принцип работы турбонаддува достаточно прост: выхлопные газы поступают в камеру турбинного колеса и заставляет его вращаться. Вращаясь, он чрез ротор приводит в движение турбокомпрессор. Тот в свою очередь засасывает воздух, сжимает его и подает в интеркулер для охлаждения. После прохождения интеркулера воздух под давлением подается во впускной коллектор. Работа наддува контролируется и регулируется регулятором давления, который дозирует количество отработанных газов, поступающих в камеру турбинного колеса. Благодаря этому осуществляется возможность изменения производительности турбонаддува в зависимости от вращения коленчатого вала.

Но такая конструкция имеет один существенный недостаток – при резком открытии дроссельной заслонки турбонаддув не успевает обеспечить необходимое количество воздуха для подачи в цилиндры. Для этого ему требуется определенное время. Выливается это в образование негативного эффекта, который получил название «турбояма». То есть, водитель резко нажимает на педаль газа, рассчитывая резко ускориться, но из-за нехватки воздуха ускорения сразу не происходит. Автомобиль начнет набирать обороты только после того, как наддув обеспечит необходимое количество воздуха. Вслед за «турбоямой» возникает еще один негативный эффект – «турбоподхват». Происходит он после «турбоямы» и сопровождается увеличенным давлением в турбонаддуве из-за интенсивной работы компрессора.

Для решения проблемы появления существует несколько способов. Первый из них – использование комбинированного наддува (состоящего из механического нагнетателя и турбонагнетателя). На начальном этапе при резком нажатии на педаль газа давление в выпускном коллекторе обеспечивает механический нагнетатель, работа которого не зависит от выхлопных газов, после в работу вступает турбонагнетатель, а механический отключается.

Видео: Устройство и неисправности турбины

Вторым способом преодоления «турбоямы» является использование двойного турбонаддува, так называемого «twin-turbo». Двойной турбонаддув обычно применяется на V-образных двигателях.

И третий способ – использование турбонаддува с изменяемой геометрией. В такой турбине воздушный поток оптимизируется за счет изменения площади канала, по которому подается воздух.

Конструкция турбокомпрессора

Принцип работы системы турбонаддува

Турбонаддув включает в свою конструкцию воздухозаборник с воздушным фильтром, дроссельную заслонку, турбокомпрессор, интеркулер (охладитель наддувочного воздуха), впускной коллектор и элементы управления. Все эти элементы связаны между собой патрубками и напорными шлангами.

Основным элементом всей этой системы является турбокомпрессор, поскольку он обеспечивает нагнетание воздуха под давлением в систему. Состоит он из двух колес, посаженных на один ротор. Корпус компрессора состоит из двух камер, в каждую из которых помещено свое колесо.

Автомобильный турбокомпрессор в разрезе

Первое колесо компрессора – турбинное. Оно воспринимает на себя энергию отработавших газов и через ротор передает его на другое колесо. То есть, турбинное колесо является ведущим. Поскольку оно работает с разогретыми газами, то изготавливается это колесо, и также его камера из жаропрочных материалов.

Второе колесо – компрессорное. Оно получает вращение от ведущего колеса и является ведомым. Данное колесо засасывает через воздухозаборник воздух, сжимает его, повышая давление, и перепускает его дальше.

Свободное вращение ротора обеспечивается наличием подшипников скольжения. Данные подшипники – плавающие, то есть между ними, ротором и корпусом обеспечивается зазор. Смазка этих подшипников производится от системы смазки мотора. Чтобы масло не вытекало наружу, и не попадало в воздух или обработанные газы, в конструкции используются уплотнительные кольца.

1 – крыльчатка турбины; 2 – крыльчатка компрессора; 3 – вал; 4 – подшипниковый узел; 5 – штуцер подачи масла; 6 –регулятор. давления наддува.

В большинстве турбонаддувов используется воздушная система охлаждения, но на некоторых бензиновых двигателях встречается и жидкостная система охлаждения компрессора, входящая с состав системы охлаждения двигателя.

Интеркулер включен в систему турбонаддува для обеспечения охлаждения сжатого воздуха. Во время работы турбокомпрессора воздух разогревается, что приводит к снижению его плотности. При охлаждении плотность снова возрастает и повышается давление. Интеркулер представляет собой обычный радиатор. Он может охлаждать воздух как при помощи воздушного, так и жидкостного охлаждения. После интеркулера воздух подается во впускной коллектор, а затем уже – в цилиндры.

В турбонаддув входят элементы управления, которые обеспечивают правильное функционирование. Главным элементом управления является регулятор давления. Данный регулятор представляет собой перепускной клапан. Этот клапан регулирует количество подаваемых отработанных газов на турбинное колесо. Данный клапан работает на основе показаний датчика давления наддува, входящий в систему управления двигателем. Этот клапан обеспечивает подачу только необходимого количества отработанных газов, остальные пуская в обход турбокомпрессора.

Также в систему управления турбонаддува могут входить еще один клапан– предохранительный, который устанавливается за компрессором. Он обеспечивает защиту от возможных скачков давления в системе при резком закрытии дросселя. Этот клапан может либо стравливать избыток давления, либо перегонять лишний воздух на вход в турбокомпрессор.

Полевой транзистор, принцип работы

По-простому, как работает полевой транзистор с управляющим р-п переходом, можно сказать так: радиодеталь состоит из двух зон: р — перехода и п — перехода. По зоне п течет электрический ток. Зона р – перекрывающая зона своего рода вентиль. Если на нее сильно надавить, она перекрывает зону для прохождения тока и его проходит меньше. Или, если давление снизить пройдет больше. Такое давление осуществляют увеличением напряжения на контакте затвора, находящегося в зоне р.

Прибор с управляющим р — п канальным переходом — это полупроводниковая пластина с электропроводностью одного из этих типов. К торцам пластины подсоединены контакты: сток и исток, в середине — контакт затвора. Действие устройства основано на изменяемости толщины пространства р-п перехода. Поскольку в запирающей области почти нет подвижных носителей заряда, ее проводимость равна нулю. В полупроводниковой пластине, в области не под воздействием запирающего слоя, создается проводящий ток канал. При подаче отрицательного напряжения по отношению к истоку, на затвор создается поток, по которому истекают носители заряда.

В случае изолированного затвора, на нем расположен тонкий слой диэлектрика. Этот вид устройства работает на принципе электрического поля. Чтобы разрушить его достаточно небольшого электричества. Поэтому для защиты от статического напряжения, которое может достигать тысяч вольт, создают специальные корпуса приборов — они позволяют минимизировать воздействие вирусного электричества.

Классификация и для чего нужно реле

Дополнительные элементы котлов

Устройство и принцип работы

Турбокомпаунд преобразует энергию, которая в противном случае и ушла бы в атмосферу, в работу за счет силовой турбины, приводимой в действие выхлопными газами. Это типичный пример утилизации остаточной энергии отработавших газов.

Устройство турбокомпаундного двигателя «Scania»

Турбокомпаундный двигатель – это частный случай компаундного двигателя. В последнем дополнительная работа извлекается при расширении отработавших газов в цилиндре низкого давления.

Как правило, современный дизель уже включает две турбины. Это газовая и компрессорная (по сути, центробежный компрессор) турбины турбонаддува посаженные на один вал. При компаундировании двигателя добавляется третья – силовая турбина (компаунда). Она также вращается отработавшими газами со скоростью до 55000 об/мин. Чтобы передать такое быстрое вращательное движение на коленчатый вал, создавав тем самым полезную прибавку крутящего момента, необходимо уменьшить скорость вращения до примерно 2000 об/мин за счет шестерней и гидромуфты. Гидравлическая муфта не увеличивает передаваемый момент, но ее пробуксовка позволяет плавно согласовать различные частоты вращения (при их резком изменении) маховика и силовой турбины.

Схема работы турбокомпаундного двигателя

Рассмотрим, как работает турбокомпаундный двигатель:

  1. Выхлопные газы с температурой 600 – 700 °C поступают в газовую турбину наддува, раскручивая её до 55000 – 100000 об/мин.
  2. Газовая турбина через вал передает вращение на центробежный компрессор туробонаддува, который нагнетает воздух во впускной трубопровод для приготовления горючей смеси.
  3. Выхлопные газы покидают турбонаддув, потеряв там около 100 °C.
  4. Отработавшие газы, сохраняя высокую температуру, поступают в силовую турбину турбокомпаунда, раскручивая её примерно до 55000 об/мин.
  5. Вращение силовой турбины передается через понижающую передачу и гидравлическую муфту на коленчатый вал и маховик двигателя.
  6. Температура газов на выходе из турбокомпаунда также снижается примерно на 100 °C. Выхлопные газы отводятся через выпускную систему.

Преимущества турбонаддува

В техническом отношении этот процесс не представляет ничего сложного. Нагнетатель представляет собой устройство, состоящее из двух колес – компрессорного и турбинного. Турбинное колесо захватывает выхлопные газы, приводящие его в движение. В результате начинает вращаться и компрессорное колесо, которое и служит для сжатия воздуха.

Компрессор в обязательном порядке контактирует с системой охлаждения, потому что в процессе действия его температура поднимается довольно высоко. Сила наддува регулируется с помощью перепускного клапана. В случае необходимости он может переводить часть выхлопа мимо турбины, чтобы понизить внутрисистемное давление.

Повышение мощности двигателя без увеличения его объема и массы. Технология турбонаддува позволяет повышать мощность двигателя без увеличения объема цилиндров и их количества. В результате легкие и небольшие по размеру моторы приобретают отличные характеристики, и, кроме этого, сокращается общая масса автомобиля, уменьшаются тормозной путь и время разгона.

Экономичность. Расход топлива у двигателей, оснащенных системой турбонаддува, в разы меньше, нежели расход топлива у мотора такой же мощности с простым атмосферным нагнетанием воздуха. Это объясняется тем, что в цилиндрах с турбонаддувом на один ход поршня тратится намного меньше топлива за счет полного его сгорания. То есть, бедная смесь компенсируется дополнительным напором воздуха, и в результате мощность увеличивается.

Принцип действия системы турбокомпаунда

Вращение турбины турбокомпаунда происходит с помощью специальных шестерней и гидравлической муфты. Ее скорость составляет более 50 тысяч оборотов в минуту. Затем вращательный момент передается на коленвал с помощью шестерней газораспределительной системы. Купить все виды турбин можно тут http://www.zaptop.ru/node/82.

Эта передача вращения создает прибавку мощности, что отражается в ускорении вращения маховика. Таким способом и создается добавочная тяга без какого-либо перерасхода топлива.

Механизм работы системы турбокомпаунда

Когда температура внутри камеры сгорания достигнет значений около +700° C, из выпускного коллектора начнет выходить выхлопной газ. Этот газ поступает в турбокомпрессорную систему, где его энергия применяется для более продуктивного сгорания топлива, что приводит к увеличению мощности работы двигателя вследствие ускорения вращающего момента двигателя. В обычном двигателе выхлопной газ после этого выходит в атмосферу. В рассматриваемом случае газ направляется в систему турбокомпаунда.

На входе в систему газы имеют высокую температуру около +600° C. Это тепло служит для преобразования в энергию, с помощью которой турбина системы раскручивается до скорости более 50 тысяч оборотов. Пройдя через турбокомпаунд, температура отработанного газа снижается примерно на 100°, а на выходе он направляется в глушитель и выхлопную трубу.

Вращательный момент придается турбине системы с помощью таких устройств, как гидравлическая муфта и механические передачи. Одной из основных функций гидравлической муфты является также согласование различающихся скоростей обращения турбины турбокомпаунда и маховика.

Скорость обращения маховика составляет примерно 2000 оборотов в минуту. Турбина системы турбокомпаунда придает ему дополнительное вращение, которое повышает скорость оборотов маховика, делает его движения устойчивыми и равномерными.

Самые свежие новости
19 декабря 2020, 12:01
Тонкости законного тюнинга автомобиляКаждое изменение в машине по закону должно быть зарегистрировано, даже если автовладелец захотел поменять автомагнитолу. На деле, конечно, этого делать…
03 декабря 2020, 23:23
Как защитить машину от угона?Статистика современных угонов показывает, что кражи автомобилей совершаются всё чаще, при этом не зависимо…
24 ноября 2020, 08:02
Как правильно доливать масло в двигатель?Любой владелец автомобиля, эксплуатируя машину, рано или поздно сталкивается с необходимостью…
10 октября 2018, 23:47
Dacia Duster 2019 получил мотор от DaimlerВ рамках Парижского моторшоу, проходившего осенью 2018 года, состоялась презентация бюджетного паркетника…
08 октября 2018, 00:24
Обзор нового GLE 2019В Париже на автосалоне наконец-то представили новый Mercedes GLE. У нас это, пожалуй,…
30 июля 2018, 17:23
Что делать с трещинами на лобовом стекле?Рано или поздно любая техника ломается. Если говорить об автотранспорте, то данное средство передвижения регулярно нуждается в ремонтных работах. Всегда…

Принцип работы реактивного двигателя

Как работает реактивный двигатель

Рисунок 3 – Схема работы реактивного двигателя

Воздух из окружающего пространства поступает на всас вентиляторов, которые подают его далее лопатки вращающегося с очень высокой скоростью турбокомпрессора. При этом поступающий воздух выполняет 2 функции:

  • окислитель для сгорания топлива;
  • охладитель агрегата.

В лопаточном аппарате турбокомпрессора воздух крепко уплотняется и под высоким давлением (от 3 МПа) подается в топливную смесительную камеру реактивного двигателя. Из рисунка 3 видно, что камера сгорания устроена таким образом, что смешение воздуха производится в несколько ступеней — на входе и в самой камере. Сюда же подводится топливо.

Хорошо перемешанная и в достаточном количестве обогащенная смесь воспламеняется, и в результате сгорания образуется тепловая энергия с выделением огромного объема газов. Последние приводят во вращение турбину горячей части двигателя, привод которой служит приводом турбокомпрессора.

В отдельных моделях реактивных двигателей турбины на выходе не монтируются. По большей части данное исполнение применяется в конструкции и принципе работы ракетного двигателя, где продукты сгорания после камеры попадают на выходные сопла.

Покидая горячую ступень, газы во всех реактивных аппаратах проходят через сопла. Эти элементы отличаются по своим конструкциям для разных моделей реактивных агрегатов и представляют собой «трубу», которая сначала сужается, а к выходу газов увеличивается в диаметре. За счет такой конструкции отработавшие газы увеличивают свою скорость до сверхзвука и образуют реактивную силу.

Температура горения в «сердце» реактивного агрегата достигает 2500°С, поэтому конструктивно требовательны в постоянстве охлаждения.

Плюсы и минусы полевых транзисторов

Полевые транзисторы своими характеристиками оставили далеко позади другие виды устройства. Широкое применение они нашли в интегральных схемах в роли выключателей.

Плюсы:

  • каскад деталей расходует мало энергии;
  • усиление выше, чем у других видов;
  • высокая помехоустойчивость достигается отсутствием прохождения тока в затворе;
  • более высокая скорость включения и выключения – они могут работать на недоступных другим транзисторам частотах.

Минусы:

  • более низкая температура разрушения, чем у других видов;
  • на частоте 1,5 ггц, потребляемая энергия начинает резко возрастать;
  • чувствительность к статическому электричеству.

Характеристики полупроводниковых материалов, взятых за основу полевых транзисторов, позволили применять устройства в быту и производстве. На основе плевых транзисторов создали бытовую технику в привычном для современного человека виде. Обработка высококачественных сигналов, производство процессоров и других высокоточных компонентов невозможна без достижений современной науки.

Ведущие производители реле

Назначение контакторов

Можно разделить эти устройства по основным признакам, хотя область применения фактически неограниченна.

Типы контакторов по назначению

  1. Устройства дистанционного включения (выключения, переключения). При работе комплекса электроустановок возникает необходимость реализовать определенный алгоритм подачи питания. Ручное управление: кнопкой, выключателем. Оператор в нужный момент подает сигнал, контакторы переменного тока приводятся в действие, коммутируя питание по заданной схеме работы. Например, нажатием одной кнопки можно запустить целый завод: конвейер, станки, освещение, систему вентиляции. Соединив определенным образом множество контакторов, можно на схеме управления автоматизировать систему питания (при этом стартовые команды подаются вручную).В автоматическом режиме команда подается с помощью электронной схемы. Программа управляет циклами производства, в нужный момент, запуская и останавливая электроустановки. При этом, любой линейный контактор можно оснастить функцией защиты: например, концевой выключатель или термореле. При создании определенных аварийных условий, питание катушки прекращается, и рабочие контакты размыкаются.
  2. Включение мощной электроустановки с помощью слаботочной линии, или опять же кнопкой (выключателем). Типичный пример — пускатель электродвигателя.

    Казалось бы, причем тут модульный контактор: для чего он нужен, если можно использовать кнопку или выключатель?Действительно, питание на электроустановку можно подать напрямую, используя контакты кнопки. Однако для надежного соединения мощного потребителя контактная группа и механизм замыкания должны быть массивными, необходимо прикладывать большое усилие при включении. Такую же силу надо применить для обесточивания. Это не всегда удобно, особенно в аварийной ситуации. Поэтому устройство, с которым непосредственно работает оператор, выполняется компактным, оно рассчитано на малый ток (потребление катушки контактора небольшое), и для приведения в действие требуется небольшое усилие, особенно на кнопке выключения. А сам линейный контактор может быть достаточно габаритным, и срабатывает он мгновенно.Еще одна причина, по которой используется разнесение по мощности управляющих и силовых линий — высокая частота циклов включения и выключения. Например, электротранспорт. Водитель до тысячи раз за смену нажимает на педаль акселератора. Если оснастить силовыми контактами сам рычаг — пользоваться им будет неудобно. Поэтому педаль только подает слабый ток на катушку, а линейный контактор запускает мощный электродвигатель.

Многие из вас, находясь рядом с кабиной водителя, слышали регулярные громкие щелчки при нажатии педали. Именно так работает линейный контактор.

Различные типы привода

Электромагнитный — основной вид, и самый распространенный. Принцип его работы мы подробно рассмотрели в начале статьи

Разве что можно акцентировать внимание на удерживающий механизм рабочей катушки. Большинство кнопочных (магнитных) пускателей не имеют фиксатора включающей кнопки

То есть, после того как оператор уберет палец, питание на электромагните должно пропасть. Конструкция большинства пускателей учитывает этот момент. На толкателе замыкающих пластин есть контактная группа, которая замыкает цепь соленоида. Пока работает вся электроустановка — на катушке есть питания. Стоит напряжению кратковременно пропасть (аварийная ситуация, или нажата размыкающая кнопка выключения), все цепи разрываются, и включение производится повторно. Это добавляет безопасности при работе механизма. После неконтролируемого восстановления питания, электроустановка не запустится, пока оператор на примет решение о включении.
рабочий день окончен, включатель остался замкнутым (станок не работает, про аварию все забыли);
питание на линии восстановлено, в безлюдном цеху начинают работать станки, нагревательные элементы, и прочее.

Использование контакторов исключает такие ситуации.

С электромагнитной тягой разобрались. Кроме нее, существуют иные способы привести в движение контактную группу. Пневматические устройства позволяют замыкать мощные контакты без применения электромагнитных приводов.

Принцип работы такой же, только в качестве управляющей команды выступает импульс высокого давления. Такие устройства широко применяются на железнодорожных локомотивах, или других установках, где присутствует пневматика.

Турбокомпаундный дизель

Но автомобилях турбокомпаунд появился в 1991 году, когда фирма «Scania» представила автомобильный шестицилиндровый дизель «DTC11», оснащенный силовой турбиной. Данный двигатель имел рабочий объем 11 литров и развивал мощность 400 л. с. Также он был на пару сотен килограммов легче 14-литровой «восьмерки» аналогичной мощности без турбокомпаунда.

Инженеры «Scania» предвещали этому мотору прекрасное будущее, но как оказалось двигатель «DTC11» работал слишком «жестко». Кроме того, он показал недостаточную топливную экономичность. В результате спрос на данный двигатель был недостаточным (выпущено всего 1500 шт.), поэтому его производство было свернуто.

Эта неудача привела к тому, что появления нового шведского шестицилиндрового турбокомпаундного двигателя «Scania DT 12 02» затянулось. Чтобы снова не потерпеть провал, «Scania» в 1998 году запустила в опытную эксплуатацию 25 грузовиков с турбокомпаундом. Отзывы водителей – самые хорошие. Новый мотор работает очень тихо, а также экономичность на высоком уровне.

Максимальная мощность «Scania DT 12 02» достигает 470 л. с. при рабочем объеме 12 л, что на 50 сил больше, чем у аналога без турбокомпаунда. Но силовая турбина – только одна особенность нового мотора. Второе новшество – это необычные насос-форсунки HPI (High Pressure Injection), созданные в сотрудничестве с фирмой «Cummins». В насос-форсунах HPI управление впрыском осуществляется гидравлически, с помощью самого топлива. Чем больше дизельного топлива под давлением 18 атмосфер поступит в насос-форсунку по управляющему каналу, тем раньше начнется впрыск (его давление – 1500 атмосфер, а в будущем – до 2400). Также «Scania» разработала новый электронный блок управления двигателем.

Что такое полевой транзистор

Полевой транзистор — это устройство с тремя или четырьмя контактами, в котором ток на двух контактах регулируется напряжением электрического поля на третьем. Поэтому их называют полевыми.

Контакты:

  • исток – контакт входящего электрического тока, находящийся в зоне n;
  • сток – контакт исходящего, обработанного тока, находящийся в зоне n;
  • затвор – контакт, находящийся в зоне р, изменяя напряжение на котором, можно регулировать пропускную способность устройства.

Полевой транзистор с п – р переходом – особый вид транзисторов, которые служат для управления током.

Он отличается от простого обычного тем, что ток в нем проходит, не пересекая зоны р — n перехода, зоны, образующейся на границы этих двух зон. Размер р — n зоны регулируется.

Новичкам, и не только, пригодится статья о принципе работы диодного моста и его подключении в схему стабилизатора.

Парогенератор

Парогенераторы – это разновидности паровых котлов, снабженные дополнительными элементами. В частности, конструкция такого устройства может включать в себя несколько промежуточных пароперегревателей, позволяющих многократно повысить мощность оборудования.

Чаще всего парогенераторы используются в атомных электростанциях. Использование пара позволяет преобразовать вырабатываемую при распаде атомов энергию в электричество.

Пар в атомных реакторах может работать следующим образом:

  1. Вода окружает внешнюю часть корпуса реактора, принимая его тепловую энергию. Пар образуется в собственном контуре, находящемся снаружи реактора. Парогенератор в подобной конструкции выполняет функцию теплообменника.
  2. Вторая схема подразумевает нахождение труб для нагрева воды в самом реакторе. В результате получается, что реактор превращается в своеобразную топочную камеру, а выработанный пар отправляется сразу в электрогенератор. Данная конструкция называется кипящим реактором и не требует установки парогенератора.

Заключение

Паровые котлы – это достаточно мощные и эффективные устройства, оказывающиеся незаменимыми в ряде ситуаций. Бытовые паровые котлы дают возможность прогревать дом или выполнять какую-то работу, а промышленные агрегаты позволяют вырабатывать электрическую энергию в огромных количествах. В любом случае, для эффективного решения поставленных задач назначение и устройство котла должны соответствовать друг другу. 

Виды контакторов по способу монтажа

Безкорпусные или специализированные устройства (например, линейный контактор в троллейбусе), не имеют ограничений по дизайну, разрабатываются исходя из соображений функционала и безопасности. Существуют и специальные конструкции, создаваемые для определенных электроустановок. Такие включатели не применяются в бытовых условиях, поскольку требуют отдельных мест размещения.

Для удобства использования в стандартных электрощитках, применяются стандартные модульные конструкции для крепления на DIN рейках.

Они отлично вписываются в общую систему энергоснабжения дома или офиса, если их применение предусмотрено проектом.

Устройство и принцип работы реле

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Драйвер
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: