Ремонт двигателя: что, как, к чему! основные принципы и методы

Рис. [1 ]. Эпюра износа гильз цилиндров двигателей:

а – нормальная эпюра; б – со смещением пояса максимального износа при изменении режимов работы двигателя и внешних условий.

Автор работы, считает преувеличенным влияние на долговечность гильз износа на участке Sb и внешних условий эксплуатации двигателя, изменение которых сопровождается возрастанием скорости изнашивания гильз на этом участке по сравнению с участком Sa, так как износ гильзы в зоне Sa при этом не увеличивается или увеличивается незначительно. При этом абразив, вызывающий износ в зоне Sb, резко повышает количество продуктов изнашивания в работающем моторном масле даже при незначительном увеличении скорости изнашивания этого участка, поскольку его площадь намного больше площади зоны Sa.

Кроме режимов работы двигателя и внешних условий на характер износа при абразивном изнашивании также имеет значение источник проникновения абразивных частиц: от пылевых частиц, поступающих с воздухом и топливом, происходит изнашивание в первую очередь в верхней части, а в случае их попадания с моторным маслом – максимальный износ имеет средняя часть гильз цилиндров в зоне Sb и эпюра износа принимает бочкообразный характер (рис. ,а).

Влияние концентрации абразивных частиц, поступающих в цилиндры двигателя с топливом, на величину и форму эпюры износа показана на рис. ,б. В каждом конкретном варианте эксплуатации двигателя эпюра износа гильзы по образующей также принимает форму, характерную для данных условий.

                        а                                                                                      б

Рис. . Износ гильз цилиндров двигателя ЗИЛ-130 по образующей:

а) в % от максимальной величины при искусственной подаче пыли: 1-с воздухом; 2-с моторным маслом; 3-с топливом; б) при работе на бензине с различным содержанием механических примесей (после 7 тыс.км пробега): 1- 0%; 2- 13,5 г/т (0,00135%); 3- 40 г/т (0,004%); 4- средний эксплуатационный износ.

При рассмотрении системы «деталь-абразивная частица-деталь» отмечается взаимное влияние твёрдостей на износостойкость сопряжённых деталей. Из практики эксплуатации автомобильных двигателей хорошо известно, что применение хромового покрытия (до 200 мкм) рабочей поверхности поршневых колец либо повышение твёрдости гильз цилиндров (закалка их рабочей поверхности до 40-50 HRC) приводит к одновременному снижению износа и кольца, и гильз цилиндров особенно при ведущем абразивном износе. Вместе с тем, авторы работы при исследовании 50 дизелей КамАЗ-740 установили: наибольшее количество натиров (72%) даёт первое поршневое кольцо, 20% — второе и лишь 8% — маслосъёмное.

Исследования по оценке износостойкости гильз цилиндров, изготовленных из различных материалов в условиях преобладания абразивного износа показывают, что износостойкость растёт в следующем порядке: гильзы из серого чугуна, с нирезистовой вставкой, из чугунных легированных сплавов. Эти результаты свидетельствуют о том, что твёрдость не является единственной характеристикой механических свойств материалов, определяющей их износостойкость, так как твёрдость нирезиста даже несколько ниже (156-197 HB), чем у серого чугуна (180-230 HB).

Советы

Начинающим мастерам, которые впервые работают со штукатуркой, всегда помогают советы опытных специалистов. Никаких сложностей нет, но все равно есть моменты, которые ставят непрофессионала в тупик.

Основной вопрос, с которым хозяева обращаются за помощью к более опытным знакомым – как выбрать штукатурку для работы. Существует сразу четыре основных вида этого материала.

Все они имеют разные характеристики и используются в разных целях:

  • Фасадная. Этот материал предназначен для наружных работ. Фасадная штукатурка применяется на улице для отделки гаражей или сараев, а также для утепления углов в домах. С ней, как правило, меньше всего мороки, но для дома покупать ее все равно не стоит.
  • Черновая. Такой вид штукатурки применяется для обработки неровных стен или стен с большими углублениями. Считается, что этот слой наносится перед дополнительным, меняющим внешний вид стены. Такой подход существенно сэкономит деньги при покупке шпаклевки, ведь черновая штукатурка стоит дешевле. А под слоем шпаклевки и красивых обоев всех недостатков этого материала будет совсем не видно.

  • Качественная. В отличие от предыдущей качественная шпаклевка уже ничем не покрывается. Обработка стен таким материалом – это завершающий этап. Используют такую штукатурку уже перед оклеиванием обоев или перед укладкой плитки. Впрочем, у нее есть и своеобразный минус – с серьезными трещинами, щелями или другими неровностями она справиться не способна.
  • Высококачественная. Это самый дорогой тип штукатурки. Стены после такой обработки гладкие и ровные. Для подготовки стен под окраску используют преимущественно высококачественную штукатурку. Зато для других задач она не очень сильно подходит.

Следующий момент, который заботит многих – это работа со штукатуркой стен. Тут, по сути, нет никаких особых тонкостей. Главный момент, о котором ни в коем случае нельзя забывать во избежание появления неровностей на стенах – они должны быть идеально ровными и чистыми.

Еще один полезный совет – не стоит проводить ремонтные работы при слишком высокой или слишком низкой температуре. И жара, и холод одинаково негативно влияют на застывающую штукатурку. Стены, обработанные в такую погоду, покрываются трещинами гораздо быстрее. Поэтому лучше подождать подходящего момента.

Существует еще один способ продления жизни ремонта, помимо выбора идеальных условий для его проведения. Для того чтобы раствор держался дольше и не было трещин, когда штукатурка сохнет, необходимо на стены установить стальную или полипропиленовую сетку с помощью дюбелей. Если выполнить все правильно, она сделает стены более прочными.

Штукатурка стен своими руками, как показывает практика – это не очень сложный процесс. Разобравшись в тонкостях работы и подыскав материал, который подходит для воплощения конкретной задумки, можно своими руками сделать неплохой ремонт, или хотя бы подготовить стены для дальнейших работ, проводимых мастерами.

О том, как оштукатурить стены цементным раствором, смотрите в следующем видео.

Зачем смешивать топливо с воздухом, спросите вы?

А вот, и школьная химия пригодилась. Для нормальной работы двигателя необходимо, чтобы топливо, подающееся в цилиндр, сгорало.

Что такое вечный двигатель?

Вечный двигатель– это устройство, которое работает бесконечно, без топлива и энергии.

Все мечтают изобрести вечный двигатель, но, к сожалению, пока такого изобретения не существует. Создание вечного двигателя противоречит закону физики сохранения энергии.

Давайте вспомним, что нужно для горения? Если вы хорошо учили химию, тогда вы должны помнить, что для реакции горения необходим кислород. Второе, что нам нужно это источник теплаогонь или искра. Если еще дровишек подкинете, то будет замечательный костер, который мы так любим делать, на пикнике.

В бензиновом двигателе в роли источника тепла выступает свеча зажигания (принудительное воспламенение). В дизельном двигателе процесс воспламенения происходит от сжатия (самовоспламенение).  

На каком топливе работает двигатель? В двигателе в качестве «дровишек», в отличие от костра, используется топливо. Карбюраторные и инжекторные двигатели работают на бензине. Дизельные двигатели работают на дизельном топливе. Есть еще двигатели, работающие на газу.

Еще, двигатели классифицируются по числу цилиндров (одно и много — цилиндровые) и их расположению (V-образные, одно рядные), способу наполнения цилиндром свежим зарядом (без наддува, с наддувом) и охлаждению (жидкостное и воздушное).

Статор асинхронного двигателя

Статор асинхронного двигателя представляет из себя сердечник, состоящий из пластин электротехнической стали и содержащий в себе медные обмотки, которые определенным образом уложены в пазах статора.

Как было упомянуто, сердечник статора состоит из пластин, которые изолированы друг от друга. С внутренней стороны статора есть пазы

в которые укладывается изоляция

Далее в эти пазы наматывается медный лакированный провод определенным образом, который представляет из себя обмотки статора

Асинхронный двигатель имеет три “куска” медного провода

Которые определенным образом уложены в пазы статора под углом в 120 градусов друг относительно друга.

Все 6 концов обмоточных проводов выведены в клеммную коробку, которая находится на корпусе двигателя.

Статор двигателя, а точнее, размеры сердечника, количество катушек в каждой обмотке и толщина моточного провода из которого намотаны катушки определяют основные параметры двигателя. Например, от числа катушек в каждой обмотке зависит номинальное число оборотов двигателя, а от толщины провода, которым они намотаны, зависит номинальная мощность двигателя. Количество обмоток для трехфазного асинхронного двигателя всегда равно трем. А вот количество катушек в каждой из этих обмоток разное. Катушки могут наматывать в один или два провода. Учитывая, что номинальное число оборотов двигателя обратно пропорционально номинальной нагрузке, можно смело сказать, что скорость вращения вала асинхронного двигателя будет уменьшаться при увеличении нагрузки. Если при работе двигателя начнут уменьшаться его обороты из-за роста нагрузки, то не остановка этого процесса может привести к полной остановке двигателя. Двигатель начнет сильно гудеть, вал ротора не будет крутиться – возникнет сильный нагрев катушек, с последующим разрушением изоляции моточного провода, что приведет к короткому замыканию и возгоранию обмоток.

Реальное фото статора одного из асинхронного двигателя выглядит вот так.

Признаки неисправного силового агрегата

В процессе эксплуатации автомобиля любой автовладелец должен внимательно следить за состоянием силового агрегата. Любая самая незначительная неисправность, возникающая в моторе, в той или иной мере немедленно сказывается на его работе.

Так, опытные автолюбители, объясняя «чайникам», как проверить двигатель, выделяют несколько основополагающих признаков, свидетельствующих о наличии неисправностей. Среди них:

  1. Появление посторонних звуков во время работы мотора.
  2. Падение мощности силового агрегата.
  3. Повышенный расход моторного масла.
  4. Снижение компрессии в цилиндрах силового агрегата.

Принцип работы

В настоящее время преобладает четырехтактный принцип работы двигателя внутреннего сгорания. Это объясняется тем, что поршень в цилиндре проходит четыре раза – вверх и вниз одинаково по два.

Как работает двигатель внутреннего сгорания:

  1. Первый такт – поршень при движении вниз втягивает топливную смесь. При этом клапан впуска находится в открытом виде.
  2. После достижения поршнем нижнего уровня, он двигается вверх, сжимая горючую смесь, которая, в свою очередь, принимает объем камеры сгорания. Этот этап, включенный в принцип работы двигателя внутреннего сгорания, является вторым по счету. Клапаны, при этом, находятся в закрытом виде, и чем плотнее, тем качественнее происходит сжатие.
  3. В третий такт включается система зажигания, так как здесь происходит воспламенение топливной смеси. В назначении работы двигателя он называется «рабочим», так как при этом начинается процесс привода в работу агрегата. Поршень от взрыва топлива начинает движение вниз. Как и во втором такте, клапаны находятся в закрытом состоянии.
  4. Завершающий такт – четвертый, выпускной, который дает понять, что такое завершение полного цикла. Поршень через выпускной клапан избавляется от отработавших газов цилиндра. Затем все циклически повторяется снова, понять, как работает двигатель внутреннего сгорания, можно представив цикличность работы часов.

Что такое водородное топливо?

Водородное топливо поставляется на заправки в газообразном или жидком состоянии. Водород в этом виде уменьшается в объёме более чем в 800 раз. Примерное время одной заправки составляет не более 3-5 минут. Для сравнения – заправка бензином занимает примерно то же самое время.

На чём ездит водородный автомобиль? На водороде – экологически чистом источнике энергии.

Водород для топлива добывают следующими способами:

  1. Электролиз воды. Это выделение водорода из воды с помощью электричества. Такой метод применяется в тех регионах, где стоимость электроэнергии дешёвая, в том числе и в России. Чистота выхода водорода при помощи электролиза – около 100%! Но здесь присутствует повышенное загрязнение окружающей среды. Предсказывают, что когда-нибудь будут созданы множество солнечных и ветряных электростанций, которые будут производить топливо без отрицательного воздействия на окружающую среду.
  2. Паровая конверсия метана. Этот природный газ нагревают до температуры 1000 градусов по Цельсию и смешивают с катализатором. Этот метод будет работать до тех пор, пока метан не закончатся в недрах земли. Реформированный водород – самый популярный и дешёвый метод создания.
  3. Газификация биомассы. Это извлечение водорода в реакторе из отходов животных и сельского хозяйства, а также сточных вод. Сейчас существуют огромные территории с биомассой, потенциал которой не оценён и тратится впустую.

В чём преимущество этого альтернативного источника энергии?

  • Топливные элементы не выделяют вредных выбросов.
  • Огромный потенциал и возможные прибыли.
  • Моментальная заправка автомобилей (3 минуты).
  • Топливные ячейки на 80% эффективнее бензина, а также дёшево стоят.

Автомобиль на водороде не оставляет так называемого «углеродного следа», который загрязняет окружающую среду. Например, Mirai за 100 км пробега выделяет 5 л воды и больше ничего, никаких выбросов в атмосферу. Но, к сожалению, на Земле слишком не существует месторождений чистого водорода, а вот нефти и газа – хоть отбавляй. Зато водорода полным-полно в атмосфере, но в виде соединений, которые надо разрушить, чтобы извлечь желанный элемент. А для этого надо затратить немалую энергию, по сравнению с той, которую мы получим при прямом расходовании водорода.

Как устроен авиационный двигатель, который обеспечивает преодоление звукового барьера для самолётов?

В последнее время, мы много говорили о самолётах , наших и отечественных. Мы рассуждали о том, какие скорости они способны развиваться, какие модели имеют преимущество. Мы считаем, что пришло время обсудить самый главный вопрос – как устроен двигатель , который способен обеспечить преодоление звукового барьера для самолётов.

Двигатели, используемые в авиации, имеют поршневую систему с воздушным охлаждением . Ранее применялись моторы с жидкостной системой охлаждения, но они оказались не надёжными, и от них пришлось отказаться.

Отличительной особенностью авиационных двигателей является способ образования топливно-воздушной смеси . В одних система этот процесс происходит в карбюраторе, в других впрыск осуществляется непосредственно в цилиндры.

В результате сгорания топлива, образовавшиеся газы толкают поршень , который и приводит в движение коленвал. По точно такому же принципу работают автомобильные двигатели внутреннего сгорания.

Поступательное движение передается через коленчатый вал на винты , которые и обеспечивают подъёмную силу и тягу двигателя. Первые самолёты имели лишь один двигатель, с винтом на носу. Позже, их стали устанавливать на крылья.

Современные двигатели имеют системы турбонадува воздуха . Кроме того, высокая эффективность достигается за счёт использования специального авиационного топлива.

В некоторых типах моторов, может использоваться дизельное топливо, обогащённое кислородом . Такие двигатели устанавливаются на современный стратегический бомбардировщик Ту-95.

Источник

Подключение асинхронного двигателя к трехфазной сети

Остановимся более подробно на подключении двигателя. Завод-производитель, как правило, маркирует не только клеммы в клеммной коробке, но и концы проводов. В реальности это либо алюминиевые скобки, либо пластиковые или картонные бирки с номером провода. Обмотки в современных двигателях указывается, как U, V, W. Начало обмоток цифрой “1”, а конец – цифрой “2”. Как вы уже знаете, асинхронный двигатель может быть включен по схеме “звезда”, а также по схеме “треугольник”. В 90% случаев используется именно подключение “звезда”.

Итак, у нас обмотки двигателя соединены по схеме “звезда”. Куда же нам подать напряжение, чтобы двигатель начал свое вращение?

Оказывается, все просто. Так как в трехфазной сети у нас в основном 4 провода ( Фаза A, Фаза B, Фаза C, Земля), то соответственно, мы должны задействовать все 4 провода.

Есть также небольшой нюанс при подключении асинхронного двигателя к трехфазной сети. Допустим, если мы подключили двигатель по схеме выше, то у нас вал будет вращаться в одну сторону, допустим, по часовой стрелке.

Но если мы поменяем две любые фазы местами, то двигатель начнется вращаться в противоположном направлении. Такой эффект называется реверсивным включением асинхронного двигателя.

Все то же самое касается и при подключении асинхронного двигателя по схеме “треугольник”. Имейте ввиду, что при включении двигателя в этом режим, мы на шильдике должны посмотреть допустимое напряжение, на которое рассчитан этот двигатель по схеме соединения “треугольник”. Если по схеме “звезда” мы можем подать на такой двигатель питание 380 Вольт, то по схеме “треугольник” только 220 Вольт.

Но кроме масла есть и другие возможные причины поломки двигателя.

Свечи зажигания в случае долгой эксплуатации без замены могут лишь беспокоить водителя ухудшением динамики автомобиля, увеличением расхода топлива и лампой «проверь двигатель». Известны случаи разрушения свечи непосредственно в двигателе с попаданием ее частей в цилиндр и являющиеся причиной дорогостоящего ремонта двигателя, но они довольно редки. К этому времени автомобиль обычно уже перестает ехать, поскольку топливо в двигателе не поджигается. Но, в это же время, несгоревшее топливо, попадая в каталитический нейтрализатор, будет догорать внутри него, приводя к «спеканию» ячеек нейтрализатора и способствуя выходу его из строя.

Устройство механизма вращения клапана

Механизм вращения клапана состоит из: неподвижного корпуса 2 в наклонных канавках которого расположены пять шариков 3 с возвратными пружинами 10, дисковой пружины 9 и опорной шайбы 4 с замочным кольцом 5. Механизм устанавливается в рас­точке, сделанной в головке цилиндров под опорной шайбой 4 кла­панной пружины 6, закрепляемой на стержне 1 с помощью сухари­ков 8 и тарелки 7. При закрытом клапане давление на дисковую пружину 9 сравнительно невелико, и она выгнута наружным краем вверх, а внутренним краем опирается в заплечик корпуса 2. Шари­ки 3 отжаты пружинами 10 в исходное положение.

В момент открытия клапана давление клапанной пружины на опор­ную шайбу 4 возрастает; под действием этого давления дисковая пружина 9, выпрямляясь, передает давление на шарики 3 и вызы­вает их перемещение в конечное положение. Вместе с шариками перемещаются дисковая пружина с опорной шайбой, клапанная пружина и клапан. Когда клапан закрывается, давление на дисковую пружину 9 уменьшается, и она, выгибаясь, вновь касается своим внутренним краем заплечиков корпуса 2, освобож­дая тем самым шарики 3. Шарики под действием возвратных пру­жин перемещаются в исходное положение. Таким образом, при каждом открытии клапана происходит его поворот на некоторый угол. (При номинальном скоростном режиме клапаны совершают 20—40 об/мин.)

Конструкция поршня

Поршень двигателя имеет достаточно простую конструкцию, которая состоит из следующих деталей:

AG

  1. Головка поршня ДВС
  2. Поршневой палец
  3. Кольцо стопорное
  4. Бобышка
  5. Шатун
  6. Юбка
  7. Стальная вставка
  8. Компрессионное кольцо первое
  9. Компрессионное кольцо второе
  10. Маслосъемное кольцо

Конструктивные особенности поршня в большинстве случаев зависят от типа двигателя, формы его камеры сгорания и типа топлива, которое используется.

Днище

Днище может иметь различную форму в зависимости от выполняемых им функций – плоскую, вогнутую и выпуклую. Вогнутая форма днища обеспечивает более эффективную работу камеры сгорания, однако это способствует большему образованию отложений при сгорании топлива. Выпуклая форма днища улучшает производительность поршня, но при этом снижает эффективность процесса сгорания топливной смеси в камере.

Поршневые кольца

Ниже днища расположены специальные канавки (борозды) для установки поршневых колец. Расстояние от днища до первого компрессионного кольца носит название огневого пояса.

Поршневые кольца отвечают за надежное соединение цилиндра и поршня. Они обеспечивают надежную герметичность за счет плотного прилегания к стенкам цилиндра, что сопровождается напряженным процессом трения.  Для снижения трения используется моторное масло. Для изготовления поршневых колец применяется чугунный сплав.

Количество поршневых колец, которое может быть установлено в поршне зависит от типа используемого двигателя и его назначения. Зачастую устанавливаются системы с одним маслосъемным кольцом и двумя компрессионными кольцами (первым и вторым).

Маслосъемное кольцо и компрессионные кольца

Маслосъемное кольцо обеспечивает своевременное устранение излишков масла с внутренних стенок цилиндра, а компрессионные кольца –  предотвращают попадания газов в картер.

Компрессионное кольцо, расположенное первым, принимает большую часть инерционных нагрузок при работе поршня.

Для уменьшения нагрузок во многих двигателях в кольцевой канавке устанавливается стальная вставка, увеличивающая прочность и степень сжатия кольца. Кольца компрессионного типа могут быть выполнены в форме трапеции, бочки, конуса, с вырезом.

Маслосъемное кольцо в большинстве случаев оснащено множеством отверстий для дренажа масла, иногда – пружинным расширителем.

Поршневой палец

Это трубчатая деталь, которая отвечает за надежное соединение поршня с шатуном. Изготавливается из стального сплава. При установке поршневого пальца в бобышках, он плотно закрепляется специальными стопорными кольцами.

Поршень, поршневой палец и кольца вместе создают так называемую поршневую группу двигателя.

Юбка

Направляющая часть поршневого устройства, которая может быть выполнена в форме конуса или бочки. Юбка поршня оснащается двумя бобышками для соединения с поршневым пальцем.

Для уменьшения потерь при трении, на поверхность юбки наносится тонкий слой антифрикционного вещества (зачастую используется графит или дисульфид молибдена). Нижняя часть юбки оснащена маслосъемным кольцом.

Обязательный процесс работы поршневого устройства – это его охлаждение, которое может быть осуществлено следующими методами:

  • разбрызгиванием масла через отверстия в шатуне или форсункой;
  • движением масла по змеевику в поршневой головке;
  • подачей масла в область колец через кольцевой канал;
  • масляным туманом

Уплотняющая часть

Уплотняющая часть и днище соединяются в форме головки поршня. В этой части устройства расположены кольца поршня – маслосъемное и компрессионные. Каналы для колец имеют небольшие отверстия, через которые отработанное масло попадает на поршень, а затем стекает в картер двигателя.

В целом поршень двигателя внутреннего сгорания является одной из самых тяжело нагруженных деталей, который подвергается сильным динамическим и одновременно тепловым воздействиям. Это накладывает повышенные требования как к материалам, используемым в производстве поршней, так и к качеству их изготовления.

Есть ли будущее у автомобилей на водородном топливе

В настоящее время имеется множество препятствий для того, чтобы перевести большую часть автомобилей на водородное топливо:

Высокая цена водорода. Примерная цена 9 долларов на 100 км пробега. Гибридный автомобиль (Toyota Prius) проедет те же сто км за 2,8 долларов, а Tesla Model S – за 3 бакса. А снижение цены на водород до уровня цен на бензин не прогнозируют даже сами производители автомобилей. Поэтому здесь не получится никакой экономии как при покупке транспорта, так и при заправках.

Производство водорода — вредно для экологии. Сейчас водород производится при помощи паровой конверсии метана, либо частичного окисления. После производства чистого водорода в атмосферу оксид углерода (углекислый газ, CO2), против которого борются многие страны при помощи альтернативных источников энергии для автомобилей. Поэтому здесь получается замкнутый круг.

Отсутствие развития водородных заправок. Для открытия средней водородной заправочной станции требуется не очень большие средства. Все станции можно пересчитать по пальцам, поэтому на водородном автомобиле далеко не уедешь. Придётся осуществлять поездки только в тех местах, где имеются эти самые водородные станции.

Высокая цена на водородные автомобили. Цена на Toyota Mirai на данный момент составляет от 58 тыс. долларов, а на самом деле его продают почти по себестоимости. Из-за таких цен многие не спешат с покупкой таких автомобилей.

Отсутствие преимуществ перед электрокарами. Запас хода, цена заправки, безопасность, мощность и разгон – везде выигрывают электрические автомобили по сравнению с водородными машинами. Единственный плюс у водородных авто – это очень быстрая заправка – 3-5 минут, тогда как электромобили заправляются за 30 минут и более. В любом случае можно в электрокарах можно быстро поменять батарею и через пару минут ехать на «полном баке». Да и когда изобретут более быстрый метод заправок электрических автомобилей, то водородные авто отойдут на 2 план.

Для чего тогда автоконцерны производят и разрабатывают автомобили? Во-первых, это вложение, вдруг через несколько лет именно эта технология окажется наиболее перспективной. Во-вторых, между фирмами идёт соперничество. В-третьих, в некоторых штатах законодательство так поменялось, что сделать водородное авто в 5 раз выгоднее, чем электрокар, плюс государство даёт постоянные гранты и вливания на развитие заправок. Если появится большое количество заводов по производству водорода, то цена автомобилей и водорода будет более интересная.

Видео: Автогиганты бьют по ТЕСЛА: ВОДОРОДНЫЕ автомобили будущего!

Водородный автомобиль – это авто будущего, к переходу на которые могут перейти в недалёком будущем. Сейчас самый популярный авто на водороде – это Toyota Mirai, стоимость которого сравнима с ценой электрокаров. Обеспечивается работа автомобилей при помощи специальных топливных ячеек или элементов, число которых достигает несколько сотен.

Если бы цена на газ была меньше, а заправок было бы больше, то авто с водородными двигателями получили бы не меньшую популярность, чем электромобили. Посмотрим, что покажет будущее.

Сколько раз прочитали статью: 6 886

Обкатка двигателя после капитального ремонта

Обкатка двигателя после капремонта напоминает обкатку мотора на новом автомобиле. Новые детали, установленные в мотор, нуждаются в «притирке», когда сглаживаются микроскопические неровности на деталях движка. Хорошо обкатанный двигатель значительно продлевает ресурс мотора после капитального ремонта по сравнению с необкатанным движком.

Всего существует несколько вариантов обкатки движка.

  1. Холодная обкатка на стенде. Это оптимальный вариант обкатки, позволяющий контролировать все процессы в двигателе авто. При этом варианте все детали и узлы мотора работают в штатном режиме, но сам двигатель не запущен. Для этого автомобильный движок подсоединяется к стенду, в него залиты масло и охлаждающая жидкость. Привод обеспечивается электромотором, который через карданный вал подсоединен к коленчатому валу автомобильного движка. Всем процессом руководит компьютерная программа, задающая количество оборотов, опираясь на показания датчиков.
  2. Горячая обкатка на стенде также проводится специалистами СТО. Проводится в двух режимах: без нагрузки и с нагрузкой. При горячей обкатке автомобильный двигатель запускается. В первом режиме мотор сначала обкатывается на пониженных оборотах, начиная от 1000 Об/мин. Постепенно частота оборотов повышается, последний этап проводится при максимально возможных оборотах движка. На втором этапе проводится обкатка с нагрузкой, нагружателем выступает электромотор стенда. Двигатель нагружается при полной подаче топлива. Частота оборотов при начале обкатки под нагрузкой — 1200 Об/мин, затем количество оборотов увеличивается.
  3. Естественная обкатка двигателя. В этом варианте автовладелец самостоятельно обкатывает движок в процессе эксплуатации автомобиля.

При самостоятельной обкатке необходимо тщательно подходить к рекомендациям специалистов и ни в коем случае не давать полную нагрузку мотору. Первый пуск двигателя после капитального ремонта — самый ответственный момент при естественной обкатке. В двигатель заливается новое моторное масло до верхней планки щупа.

Перед запуском необходимо полностью зарядить АКБ, чтобы она смогла осуществить первый поворот коленвала.
На карбюраторных автомобилях необходимо подкачать топливо вручную.
После запуска мотора необходимо контролировать уровень масле в движке. Если лампочка низкого давления масла не погасла через несколько секунд, то нужно срочно заглушить мотор.
Движок прогревается до уровня около 90 °C. В процессе нагрева нужно опять же контролировать давление масла, его уровень должен составлять от 0,4 до 0,8 кг/см2. После нагрева до указанных величин необходимо заглушить мотор. Как только двигатель остынет до температуры в 30–40 °C, мотор снова запускается. Всего таких циклов необходимо совершить 1–2 десятка.
Далее мотор обкатывается на более высоких оборотах — 1000 Об/мин, 1500 Об/мин и 2000 Об/мин

В каждом режиме мотор обкатывается 3–5 минут.
В дальнейшем можно осторожно начинать движение. Первые 2–3 тыс

км максимальная скорость автомобиля не должна превышать 60 –70 км/ч, после достижения этого рубежа нужно пройти ТО, где следует заменить моторное масло, так как в нем накапливаются продукты износа. Также регулируются зазоры клапанов, обороты холостого хода и натяжение цепи ГРМ. После ТО «максималку» можно увеличить до 90 км/ч.

Окончательная притирка деталей и узлов мотора происходит на отметке в 10 тыс. км пробега после капитального ремонта. После этого движок готов к полным рекомендованным нагрузкам.

Устройство двигателя внутреннего сгорания

При разнообразии конструктивных решений устройство у всех ДВС схоже. Двигатель внутреннего сгорания образован следующими компонентами:

  • Блок цилиндров . Блоки цилиндров – цельнолитые детали. Более того, единое целое они составляют с картером (полой частью). Именно на картер ставят коленчатый вал). Производители запчастей постоянно работают над формой блока цилиндров, его объемом. Конструкция блока цилиндров ДВС должна чётко учитывать все нюансы от механических потерь до теплового баланса.
  • Кривошипно-шатунный механизм (КШМ) – узел, состоящий из шатуна, цилиндра, маховика, колена, коленвала, шатунного и коренного подшипников. Именно в этом узле прямолинейное движение поршня преобразуется непосредственно во вращательное. Для большинства традиционных ДВС КШМ – незаменимый механизм. Хотя ряд инженеров пытаются найти замену и ему. В качестве альтернативы КШМ может рассматриваться, например, система кинематической схемы отбора мощности (уникальная российская технология, разработка научных сотрудников из «Сколково», направленная на погашение инерции, снижение частоты вращения, увеличение крутящего момента и КПД).

Газораспределительный механизм (ГРМ). Присутствует у четырехтактных двигателей (что это такое, ещё будет пояснено в блоке, посвященном принципу работы ДВС). Именно от ГРМ зависит, насколько синхронно с оборотами коленчатого вала работает вся система, как организован впрыск топливной смеси непосредственно в камеру, под контролем ли выход из нее продуктов сгорания.

Основным материалом для производства ГРМ выступает кордшнуровая или кордтканевая резина. Современное производство постоянно стремится улучшить состав сырья для оптимизации эксплуатационных качеств и повышения износостойкости механизма. Самые авторитетные производители ГРМ на рынке – Bosch, Lemforder, Contitech (все – Германия), Gates (Бельгия) и Dayco (США).

Замену ГРМ проводят через каждые 60000 — 90 000 км пробега. Всё зависит от конкретной модели авто (и регламента на неё) и особенностей эксплуатации машины.

Привод газораспределения нуждается в систематическом контроле и обслуживании. Если пренебрегать такими процедурами, ДВС может быстро выйти из строя.

  • Система питания . В этом узле осуществляется подготовка топливно-воздушной смеси: хранение топлива, его очистка, подача в двигатель.
  • Система смазки . Главные компоненты системы – трубки, маслоприемник, редукционный клапан, масляный поддон и фильтр. Для контроля системы современные решения также оснащаются датчиками указателя давления масла и датчиком сигнальной лампы аварийного давления. Главная функция системы – охлаждение узла, уменьшение силы трения между подвижными деталями. Кроме того, система смазки выполняет очищающую функцию, освобождает двигатель от нагара, продуктов, образованных в ходе износа мотора.
  • Система охлаждения . Важна для оптимизации рабочей температуры. Включает рубашку охлаждения, теплообменник (радиатор охлаждения), водяной насос, термостат и теплоноситель.

В LMS ELECTUDE системе и времени впрыска уделяется особое внимание. Любой автомеханик должен понимать, что именно от исправности системы впрыска, времени впрыска зависит способность оперативно изменять скорость движения авто

А это одна из важнейших характеристик любого мотора.

Тонкий нюанс! При изучении устройства нельзя проигнорировать и такой элемент, как датчик положения дроссельной заслонки. Датчик не является частью ДВС, но устанавливается на многих авто непосредственно рядом с ДВС.

Датчик эффективно решает такую задачу, как передача электронному блоку управления данных о положении пропускного клапана в определенный интервал времени. Это позволяет держать под контролем поступающее в систему топливо. Датчик измеряет вращение и, следовательно, степень открытия дроссельной заслонки.

А изучить устройство мотора основательно помогает дистанционный курс для самообучения «Базовое устройство двигателя внутреннего сгорания автомобиля», на платформе ELECTUDE

Принципиально важно, что каждый может пошагово продвинуться от теории, связанной с ДВС и его составными частями, до оттачивания сервисных операций по регулировке. Этому помогает встроенный LMS виртуальный симулятор

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Драйвер
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: